EVENTOS Mostra Interna de Trabalhos de Iniciação Científica IX Mostra Interna de Trabalhos de Iniciação Científica e II Mostra Interna de Trabalhos de Iniciação em Desenvolvimento Tecnológico e Inovação 2018
Use este identificador para citar ou linkar para este item: http://rdu.unicesumar.edu.br/handle/123456789/2335
Tipo: Artigo
Título: O MODELO PRESA PREDADOR DE LOTKA-VOLTERRA
Autor(es): NUNES, Jaderson Lima Dias
OLIVEIRA, Anna Paula Machado de
Abstract: Esta pesquisa tem por objetivo geral estudar o modelo de equações diferenciais ordinárias criado por Lotka-Volterra para analisar o comportamento de duas populações: uma sendo a presa e a outra o predador. O modelo trata-se de um sistema de Equações Diferenciais Ordinárias de Primeira Ordem envolvendo duas variáveis (pois estudamos duas espécies – presa e predador) e cuja solução, em um caso geral, pode ser bem complexa. A criação desse modelo baseou-se no modelo populacional criado por Thomas Malthus em 1798, que trabalha com a teoria de que a taxa de crescimento da população de um país em um determinado instante é proporcional à população do país naquele mesmo instante. Nessa pesquisa, procuramos descobrir onde surgiu o modelo de Lotka-Volterra e o motivo das equações envolvidas terem tal formato. Pesquisamos sobre quem foram os matemáticos envolvidos originalmente nesse estudo e, devido à complexidade em resolver esse sistema diretamente, buscamos fazer uso da Teoria Qualitativa das Equações Diferenciais e classificar os pontos de equilíbrio do sistema, para termos ideia do comportamento das soluções. Posteriormente, estudamos a possibilidade de dar valores aos parâmetros envolvidos para construir exemplos consistentes. No geral, as equações de Lotka-Volterra são utilizadas para descrever dinâmicas populacionais em sistemas biológicos e, usando este modelo, é possível analisar o comportamento das espécies de presas e predadores podendo, inclusive, dar previsão de coexistência entre essas espécies ou a extinção de algumas delas. Para alcançar o objetivo geral, estudamos sobre Modelagem Matemática, seus conceitos e construção, afinal, modelos matemáticos tornaram-se uma ferramenta importante para o entendimento de dinâmicas populacionais e, na sequência, estudamos sobre Equações Diferenciais Ordinárias. Pretendemos encontrar condições para que as três possíveis situações previstas para o problema ocorram (extinção das presas, extinção dos predadores ou coexistência de ambas), usando como base a teoria qualitativa de equações diferenciais, através do estudo dos pontos de equilíbrio do sistema apresentado.
Palavras-chave: Equações Diferenciais Ordinárias
Modelagem Matemática
Lotka-Volterra
Idioma: por
País: Brasil
Editor: UNIVERSIDADE CESUMAR
Sigla da Instituição: UNICESUMAR
Tipo de Acesso: Acesso Aberto
URI: http://rdu.unicesumar.edu.br/handle/123456789/2335
Data do documento: 23-Out-2018
Aparece nas coleções:IX Mostra Interna de Trabalhos de Iniciação Científica e II Mostra Interna de Trabalhos de Iniciação em Desenvolvimento Tecnológico e Inovação 2018

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
jaderson_lima_dias_nunes.pdfTrabalho apresentado na modalidade comunicação oral no IX Mostra Interna de Trabalhos de Iniciação Científica e II Mostra Interna de Trabalhos de Iniciação em Desenvolvimento Tecnológico e Inovação (23 a 26 de outubro de 2018)397.92 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.