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RESUMO

O desenvolvimento industrial acompanha a crescente demanda de consumo da populagdo.
Paralelamente, a poluicdo dos recursos hidricos proveniente de atividades antropicas modifica
a vida aquatica e impacta diretamente a saude humana. Os métodos convencionais de
tratamento de efluentes industriais podem nao ser satisfatorios para remoc¢éo de contaminantes
organicos. Diante disso, o desenvolvimento de novas técnicas para tratar substancias mais
complexas torna-se uma necessidade. Os processos oxidativos avangados compdem métodos
eficazes a fim de oxidar e mineralizar compostos ao depender da estrutura quimica do
contaminante, sendo que, um dos processos mais aplicaveis e econdmicos é a fotocatalise
heterogénea. O carvao pulverizado de origem animal, € um material residual proveniente da
geracdo do carvao granular e, possui cerca de 75% de hidroxiapatita (Caio(PO4)s(OH)2) em sua
composic¢do. Tal mineral natural, € o principal componente de dentes e 0ssos e, vem sendo cada
vez mais utilizado como suporte de catalisadores e, especialmente no tratamento de agua. Sua
morfologia e propriedades fisicas permite o ajuste do material por diversas técnicas sintéticas,
além de ser um residuo com baixo custo empregado. Neste contexto, a presente pesquisa teve
0 objetivo de avaliar a atividade fotocatalitica de um nanocompdsito de Grafeno e MnFe2O4
suportado em carvédo ativado de 0sso bovino pulverizado (CP-GM) para degradacgéo do corante
azul de metileno (AM) em amostras artificialmente poluidas. Selecionado a granulometria do
carvao ativado, realizou-se a sintese e caracterizacdo do CP-GM, seguido das andlises de
microscopia eletronica de varredura, microscopia eletronica de transmissao, espectroscopia no
infravermelho por transformada de Fourier, difracdo de raio X, potencial zeta e ponto de carga
zero. Posteriormente, avaliou-se a eficiéncia do nanocomposito utilizando irradiacdo solar
como fonte de energia para degradacéo do corante, em diferentes condi¢fes de concentracdo de
fotocatalisador, concentragéo de H.O2 e comportamento em diferentes faixas de pH. A sinergia
entre 0os materiais do nanocompésito potencializou a degradacdo fotocatalitica do corante AM,
atingindo 85,5% de remocdo ao utilizar 0,05 g/L de catalisador em pH neutro, constando-se o
estreitamento do band gap do nanocompaésito quando comparado com o CP, de 5,0 eV para 2,1
eV, o que comprovou a eficacia do OGR e MnFe2O4 suportados no carvdo. Ainda, o
fotocatalisador magnético demonstrou excelente estabilidade em 10 ciclos consecutivos,
reduzindo apenas 6,5% do potencial fotocatalitico até o sexto ciclo. Por fim, com a concepc¢éo
de um fotocatalisador eficiente, espera-se que o0 presente estudo possa agregar valor ao residuo
industrial e contribuir para o aprimoramento dos métodos de tratamento de agua e efluentes,
garantindo a qualidade de 4gua aos seres vivos e ao ambiente.

Palavras-chave: Fotocatalise. Hidroxiapatita. Residuo. Sustentabilidade. Tratamento de &gua.



ABSTRACT

Industrial development follows the growing consumption demand of the population. At the
same time, pollution of water resources by human activities modifies aquatic life and directly
impacts human health. Conventional methods of treating industrial effluents may not be
satisfactory for removing organic contaminants. Therefore, the development of new techniques
to treat more complex substances becomes a necessity. Advanced oxidative processes comprise
effective methods to oxidize and mineralize compounds depending on the chemical structure
of the contaminant, being that, one of the most applicable and economical processes is
heterogeneous photocatalysis. Pulverized coal of animal origin is a waste material coming from
the generation of granulated coal and has about 75% hydroxyapatite (Cai0(PO4)s(OH)2) in its
composition. This natural mineral is the main component of teeth and bones and has been
increasingly used as a catalyst support, especially in water treatment. Its morphology and
physical properties allow the adjustment of the material by various synthetic technigues, in
addition to being a waste with low cost. In this context, the present research aimed to evaluate
the photocatalytic activity of a Graphene and MnFe204 nanocomposite supported on pulverized
bovine bone activated charcoal (CP-GM) for degradation of methylene blue dye (AM) in
artificially polluted samples. After selecting the granulometry of the activated carbon, the
synthesis and characterization of CP-GM was carried out, followed by analysis by scanning
electron microscopy, transmission electron microscopy, Fourier transform infrared
spectroscopy, X-ray diffraction, zeta potential and point zero charge. Subsequently, the
efficiency of the nanocomposite was evaluated using solar irradiation as an energy source for
dye degradation, under different conditions of photocatalyst concentration, H.O2 concentration
and behavior in different pH ranges. The synergy between the nanocomposite materials
potentiated the photocatalytic degradation of the AM dye, reaching 85.5% removal when using
0.25 g/L of catalyst at neutral pH, with a narrowing of the band gap of the nanocomposite when
compared to the CP, from 5.0 eV to 2.1 eV, which proved the effectiveness of OGR and
MnFe2Os supported on charcoal. Furthermore, the magnetic photocatalyst demonstrated
excellent stability in 10 consecutive cycles, reducing only 6.5% of the photocatalytic potential
until the sixth cycle. Finally, with the design of an efficient photocatalyst, it is expected that the
present study can add value to industrial waste and contribute to the improvement of water and
effluent treatment methods, ensuring water quality for living beings and the environment.

Keywords: Photocatalysis. Hydroxyapatite. Waste. Sustainability. Water treatment.
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1 INTRODUCAO

O consumo exacerbado da populacédo e o crescimento de atividades industriais estdo
comprometendo a qualidade da &gua e causando sérios riscos a salude humana e ao ambiente.
A poluicdo de &guas residuais por corantes sintéticos causa danos irrepardveis a microbiota
aquatica pois, muitas vezes, esses poluentes sdo resistentes aos processos de biodegradacéo,
necessitando de métodos especificos e consistentes para restabelecer um ambiente sustentavel
garantindo a prote¢édo do ecossistema (KARIMI; RAJABI; KAVOSHI, 2020).

A industria téxtil ¢ mundialmente conhecida por ser uma das maiores geradoras de
efluentes contaminados por produtos quimicos e corantes. O azul de metileno (AM) é um dos
corantes mais utilizados nas etapas de tingimento e coloracdo nesse setor industrial. Sua
estrutura ¢ aromadtica, complexa e, quando disposta de forma inadequada nos cursos d’agua,
promove a poluicdo visual, além de reduzir a passagem de radiacdo solar e afetar a fotossintese
natural do ambiente aquatico, devido a exposicdo dos organismos a substancias toxicas (DE
OLIVEIRA et al., 2020). Em vista disto, ha o desafio de se desenvolver novas tecnologias para
o tratamento e controle da qualidade dos efluentes e da agua.

Os processos oxidativos avangados (POAs) tém sido amplamente adotados para a
remocao de micropoluentes organicos, uma vez que as etapas dos tratamentos convencionais
néo sédo eficazes para degradacao desses compostos (PISHARODY et al., 2022). Basicamente,
o0 principio de oxidacdo da maioria dos POAs € a geracdo de radicais altamente reativos que
atuam de forma ndo seletiva e extremamente rapida com compostos organicos degradando-os
de forma parcial ou completa (COHA et al., 2021). Dentre os POA mais estudados, destaca-se
a fotocatélise heterogénea.

A fotocatalise heterogénea pode ser considerada uma tecnologia limpa, devido a sua
capacidade de mineralizar (de forma parcial ou completa) contaminantes emergentes por meio
de radicais hidroxilas (*OH) que sdo gerados na presenga de semicondutores com propriedades
altamente reativas sob irradiacdo ultravioleta (UV), visivel ou solar. Nesse processo, alguns
fatores como pH, concentragéo de peroxido de hidrogénio (H203), concentracdo do catalisador
e presenca de oxigénio podem reduzir ou elevar o potencial de degradacdo dos poluentes
(AOUDJ; DROUICHE; KHELIFA, 2019).

A ferrita de manganés (MnFe.Q4), possui excelentes propriedades para diferentes
aplicacdes, como na adsorcéo, catélise e no tratamento de agua. Apresenta alta area superficial,

biocompatibilidade e potencial de interacdo dipolo-dipolo e magnética. Entretanto, as
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propriedades citadas podem afetar sua separacdo e recuperacdo devido a agregacdo e
sedimentacgéo dos fluidos (WANG et al., 2017).

A fim de evitar ou reduzir a aglomeracdo da MnFeO4, as nanoparticulas magnéticas de
oxido de grafeno (OG) tem sido verificada como um material promissor na remocao de
poluentes aplicadas ao tratamento de a4gua por meio de atividade fotocatalitica. Esse derivado
do grafeno, quando suportado a MnFe>O4 reduz a taxa de recombinacdo de elétrons-lacuna,
potencializando a difusdo dos reagentes em locais ativos no nanocompdsito, além de melhorar
a capacidade de adsorcdo da ferrita por meio de sua elevada condutividade elétrica e
estabilidade de sedimentagcdo (PUMERA et al., 2010; WANG et al., 2017; YANG et al., 2015).

O osso bovino é um residuo proveniente da inddstria pecuéria que pode ser utilizado
para producdo de carvao ativado, obtido pela carbonizac¢do das partes mais rigidas dos 0ssos.
Esse material apresenta vantagens econémicas em relacdo aos demais meios adsorventes,
devido sua grande area superficial interna formada por milhares de macroporos durante a
ativacdo. Esse carvdo se difere dos convencionais pela presenga da matriz mineral
hidroxiapatita inerte, que atua na adsorc¢éo e troca i6nica de diversos compostos presentes na
agua (NIGRI et al., 2017).

Considerando o exposto, o presente trabalho teve como objetivo analisar a eficiéncia
fotocatalitica do nanocompdsito de grafeno e ferrita de manganés suportado em carvao ativado
de osso bovino pulverizado (CP) para a degradagéo do corante AM, utilizando a luz solar como

fonte de irradiacao.
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2 OBJETIVOS

2.1 Objetivo geral

Sintetizar e avaliar a eficiéncia do nanocompoésito magnético de grafeno e ferrita de
manganés suportado em carvao ativado de 0sso bovino na fotodegradacgdo do corante azul de

metileno.

2.2 Objetivos especificos

¢ Sintetizar o nanocomposito de grafeno e ferrita de manganés suportado em carvao
ativado de 0sso bovino;

e Caracterizar o nanocomposito;

e Avaliar a atividade fotocatalitica e eficiéncia do nanocomposito em diferentes
condigdes de luz, concentracdo do catalisador, H-O> e pH;

e Avaliar a reciclabilidade do nanocomposito na fotodegradacdo do AM.

e Determinar o band gap 6ptico do nanocompdsito.

e Estudar e propor um mecanismo de reacdo de atividade fotocatalitica.
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3 REVISAO DE LITERATURA

3.1 Problematica ambiental: Contaminacédo da dgua

O desenvolvimento humano e o crescimento econémico sdo elementos baseados na
necessidade de suprir a demanda de &gua no mundo, sendo que a segunda, esta diretamente
ligada com aos processos agricolas e industriais. Em consequéncia, considera-se que aumento
populacional também acarretara em uma maior utilizacdo de agua que, com o passar dos anos,
tende a alterar o fluxo e afetar a distribuicdo da agua quanto sua quantidade e qualidade
(STEVOVIC; NESTOROVIC; LUTOVAC, 2018).

Os poluentes organicos estdo cada vez mais presentes nos cursos d’agua através de
substancias quimicas provenientes de produtos farmacéuticos, cosmeticos, biomédicos, téxteis
e pesticidas e, representam um grande problema devido ao seu manejo e tratamento inadequado
(TITCHOU et al., 2021). Esses contaminantes, sio denominados “persistentes” por resistirem
aos processos convencionais de tratamento de efluentes e, por sua elevada carga toxica
desencadear diversos problemas ao ecossistema e a saude humana a curto e longo prazo. As
tecnologias alternativas, entdo, ttm o intuito de desenvolver novos métodos, econémicos e
eficazes, para o tratamento destes compostos organicos presentes no ambiente (INYANG;
DICKENSON, 2015).

As industrias téxteis utilizam variados corantes sintéticos em suas atividades, como o
azul de metileno (AM), resultando em efluentes nocivos a vida aquéatica por modificar
caracteristicas como odor, pH, coloracdo, demanda bioquimica de oxigénio, demanda quimica
de oxigénio e carbono organico total. Os processos convencionais, como fisico, quimico ou
bioldgico, ndo sdo suficientes para remocdo desses compostos recalcitrantes, inibidores e
toxicos, pois a depender do poluente, pode-se resultar subprodutos ainda mais prejudiciais ao
ambiente (MOUELE et al., 2015).

Dentre os contaminantes organicos, o AM classifica-se como um corante catiénico
muito utilizado para o tingimento de algodao, 18, estampas de papel, tintas capilares, além de
fins medicinais. Apesar de néo ser considerado muito perigoso, este corante pode causar danos
indesejaveis a satde humana caso seja inalado ou ingerido, além de possuir capacidade reativa
com muitas substancias, o que dificulta ainda mais seu tratamento (VIEIRA et al., 2021).

Devido sua estrutura quimica de dificil degradacdo por processos convencionais de

tratamento, 0 AM é muito utilizado para testes de mecanismos de fotodegradacao, podendo ser
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experimentado em diferentes concentragdes, com modelos aprimorados, como utilizando luz
artificial ou natural, por lampadas ou irradiagéo solar, respectivamente (XIONG et al., 2021).

Os métodos convencionais de purificacdo da dgua ndo sdo satisfatoriamente eficazes
para tratar poluentes emergentes e refratarios. Durante o tratamento, 0 contaminante presente
na dgua apenas muda de fase (liquida para solida) ocorrendo a chamada transferéncia de
poluicdo, ja que o mesmo ndo é totalmente degradado (JI et al., 2021).

Na maioria das estacbes de tratamento de aguas residuais os efluentes téxteis de
pequenas industrias sdo submetidos a processos convencionais fisico-quimicos, iniciando por
gradeamento seguido de coagulacao-floculacdo, enquanto que, em indUstrias maiores, adotam-
se preferencialmente processos bioldgicos aerébicos, antecedidos ou ndo pelo tratamento fisico-
qguimico. Ainda que estes processos convencionais sejam, de certa forma eficazes e de baixo
custo, além da formacdo de lodo ndo degradavel e até substancias recalcitrantes ainda mais
toxicas do que o produto inicial, estas etapas nao sdo suficientes para remocéo de, por exemplo,
corantes reativos (HUANG, A. K. et al., 2019; WEI et al., 2021).

Salienta-se que, os residuos sélidos resultantes de processos fisico-quimicos ou
bioldgicos, devem ser separados por decantadores e, posteriormente adensados, secados e
dispostos em aterros industriais ou incinerados. Essas etapas sucessivas ndo sao efetivamente
seguidas, logo, esse material é frequentemente disposto de forma inadequada no ambiente
(RAMOS et al., 2020).

O Conselho Nacional do Meio Ambiente (CONAMA), Resolucdo n° 357/2005, dispbe
sobre a classificacdo dos corpos de agua e diretrizes para o seu enquadramento, estabelecendo
ainda, as condicdes para o langamento de efluentes e outras providéncias. Visto que o nivel de
tratamento de um determinado efluente relaciona-se com a qualidade do corpo receptor e dos
parametros necessarios para a utilizacdo da agua a jusante do ponto de lancamento, faz-se
necessario o desenvolvimento de novas técnicas ambientalmente corretas que degradem o
poluente de forma completa e minimizem e/ou evitem a formag&o de lodo toxico nas estacOes

de tratamento e, a fim de manter a qualidade da agua.

3.2 Processos Oxidativos Avangados

Os Processos Oxidativos Avancados (POAS) sdo compostos por diferentes processos
(quimicos, fisicos, fotoquimicos, fotocataliticos e eletroquimicos) que tém a capacidade de
produzir espécies oxidantes sob condigdes ambientais (pressdo e temperatura), em quantidade

suficiente para efeito de tratamento e purificacdo da dgua. Dentre os oxidantes que podem ser
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gerados no processo, destaca-se o radical hidroxila (*OH) que apresenta um potencial de
reducdo padréo de aproximadamente 2,80 V, sendo o segundo oxidante mais poderoso depois
do fldor (3,03 V). A eficiéncia do processo é analisada pela reducdo da toxicidade e
mineralizacdo dos contaminantes organicos sem a formacéo de subprodutos no processo, como
por exemplo o lodo (TITCHOU et al., 2021).

Os radicais hidroxila resultam da combinacdo de oxidantes, como Oz e H2O2, com a
irradiacdo ultravioleta (UV) ou visivel (Vis), na presenca de catalisadores, geralmente ions
metalicos ou semicondutores, sendo que o H2O: pode ser inserido na solucdo ou gerado
eletroquimicamente no meio reacional. Atualmente, os POAs sdo considerados opgles vidveis
para a desintoxicacdo de varios tipos de efluentes industriais, produtos farmacéuticos, pesticidas
e herbicidas. Além de auxiliarem na reducdo da toxicidade dos produtos, eles também
melhoram a biodegradabilidade do efluente, ndo necessitando de pds-tratamentos (XIA et al.,
2022).

As espécies ativas dos POAs atuam por mecanismos de abstracdo do &tomo de oxigénio,
adicdo eletrofilica, transferéncia eletrdnica ou reacdes radical-radical (BABU et al., 2019). A
reacao por abstracdo de hidrogénio normalmente ocorre com hidrocarbonetos alifaticos, onde
os radicais hidroxila formados sdo capazes de oxidar compostos por abstracdo do dtomo de
hidrogénio, originando os radicais orgéanicos, como representado na Equacdo 1. Em seguida
adiciona-se oxigénio molecular, dando origem aos radicais peréxido (Equagdo 2), que sao
intermediarios gque iniciam a reacdo de degradacéo até resultar em CO2, H2O ou sais inorganicos

e, 0 maior interesse é eliminar toda carga organica na solugio (MILENKOVIC et al., 2020).

RH+'OH — R+ H20 1)
R*+ 02 — RO2 (2)

A adicdo eletrofilica geralmente ocorre com hidrocarbonetos insaturados ou aromaticos,
iniciando no ato de adicdo de *OH a compostos organicos que possuem ligagdo =, resultando
na formacgdo de outros radicais organicos, sendo 0s percursores para posteriores reagdes de
degradacéo, conforme observa-se na Equacgédo 3 (SIVAGAMI; SAKTHIVEL; NAMBI, 2018).

R R
o N L
R R R

R

3)
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J& a transferéncia eletrbnica, ocorre quando a abstracdo de hidrogénio e a adigdo
eletrofilica sdo desfavorecidas, como no caso de alguns hidrocarbonetos clorados,

exemplificados na Equacao 4.

RX + 'OH — RX"" + OH- (4)

Além das reacdes expostas anteriormente, pode ocorrer a reacdo radical-radical
(Equacbes 5 e 6). Esta, porém, do ponto de vista oxidativo para compostos organicos, sao
indesejaveis, pois o processo consome «OH, influenciando negativamente a fotodegradacéo dos
contaminantes (SIVAGAMI; SAKTHIVEL; NAMBI, 2018; RAYAROTH et al., 2021;)

2 ‘'OH — H»0, (5)
H,0, + *OH — HO;" + H-0 (6)

Dentre os possiveis mecanismos reacionais na degradacdo dos poluentes, o predominio
das reacdes depende da concentracdo do substrato organico, sua complexidade estrutural e
recalcitrancia. Os POAs sdo distribuidos entre sistemas homogéneos e heterogéneos, sendo
eles: o primeiro, quando o catalisador e os reagentes se encontram na mesma fase (fluida), e o
sistema que envolve reacGes heterogéneas, quando o catalisador se encontra no estado sélido,
utilizando 6xidos ou metais fotoativos, respectivamente. Na Figura 1 sdo demonstrados 0s
principais sistemas de POAs (NASCIMENTO et al., 2017).

Processos Oxidativos Avangados

Sistemas Homogéneos Sistemas Heterogéneos
. 1 , : 1 ,
Com Sem Com Sem
irradiacdo irradiacédo irradiacdo irradiacdo
2+ . -
H,0,/UV H,0,/Fe Fotocatalisador /O,/UV Eletro-Fenton
I I I I
Foto-Fenton 0O4/H,0, Eletroquimico

Fotocatalisador/H,0,/UV

I I
O,/UV Cavitacdo

Fotocatalisador/UV/Luz solar

Figura 1 - Principais Processos Oxidativos Avangados. Fonte: Autora (2023).
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Compondo os POAs, a fotocatalise fundamenta-se na fotoativagdo de catalisadores
através da incidéncia de fotons emitidos por uma fonte de radiag&o (solar ou artificial). Com a
ativacdo, o fotocatalisador gera pares de elétrons lacuna, que em contato com portadores de
carga (H20, O2, H20. e Oz) ddo origem as espécies oxidativas radicais. Estes compostos
transitorios sdo oxidantes quimicos ndo-seletivos, extremamente reativos, que atuam de forma
répida, com tempo t(1/2)= 100 a 10.000 us, capazes de oxidar e degradar contaminantes
organicos e espécies biologicas presentes na agua por vias de reacdo oxidativa ou redutiva
(MUESES et al., 2021). Ao reagirem com os poluentes, os mesmos podem ser simplificados a

produtos inorganicos, agua e didxido de carbono (SUZUKI et al., 2016).

3.3 Fotocatalise heterogénea

Segundo Sreeja e Sosamony (2016), o Fenton é considerado 0 mais importante dos
POAs, atuando de forma quimica e sem a necessidade de equipamentos de grande porte ou
aparelhos sofisticados. Esse processo comp&e um sistema que envolve a reacdo de ions ferro e
peréxido de hidrogénio (Fe?*/Fe®* + H02) que sofrem a decomposicéo catalitica produzindo
radicais hidroxila (*OH). Uma vez que o radical ¢ formado, ele atua degradando o composto
organico presente na solucdo de forma eficiente.

Por outro lado, algumas desvantagens desse processo sdo: grande quantidade de lodo
acumulado ap6s a remocdo do ferro, faixa de pH limitada para atuacdo e dificuldade de
separacao de ions ferro. Por isso, catalisadores heterogéneos tém sido frequentemente utilizados
substituindo essa atividade para um melhor resultado, como no processo foto-Fenton (CARLOS
etal., 2021).

Os processos foto-Fenton sdo definidos como reac@es iniciadas de forma homogénea ou
heterogénea assistidos por irradiacdo ultravioleta (UV) e baseadas em catalisadores ions ferro
(comumente chamados de processos classicos de foto-Fenton) ou catalisadores sélidos (6xidos
de ferro, compositos a base de ferro e semicondutores a base de ferro). Combinando catalisador
e reagente, a presenca de luz no sistema, produz uma elevada quantidade de radicais hidroxila
elevando o potencial de degradacdo de contaminantes. O processo heterogéneo, por sua vez, é
considerado mais eficaz devido a capacidade de reciclagem do catalisador a base de ferro e
efetividade na utilizagdo em uma maior faixa de pH (ARAUJO et al., 2021; GOU et al., 2021).

A oxidagdo dos poluentes organicos em solucGes aquosas ocorre com a exposi¢do do
complexo Fe(OH)?* a radiagdo UV, ou seja, 0 presente sistema é induzido por uma fonte de luz

promovendo, assim, a degradacdo oxidativa através da producdo de radicais hidroxila,
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conforme descrito nas de Egs. 7 a 9. A eficiéncia dos catalisadores heterogéneos esta
diretamente ligada com a incidéncia externa de energia (que melhora a atuacéo do catalisador
de forma consideravel) e a concentragdo do H20. que também depende da proporcdo do
poluente alvo da decomposicéo. Isso, pois 0 H202, aumenta a disponibilidade da produgéo dos
radicais hidroxila no processo, mas, o excesso do mesmo também causa sequestro dos OH
(MORADI et al., 2020; SILVA; BALTRUSAITIS, 2021).

Fe3* + HoO — Fe(OH)** + H* (7)
Fe(OH)?" + hy — Fe?" + «OH (8)
Fe?*+ H,02 — Fe®* + OH +«OH 9)

A utilizacdo do sistema heterogéneo, reduz a liberacdo de ferro na agua e facilita a
recuperacdo do catalisador, ja que ele se encontra em uma fase diferente do reagente (BAHRI
etal., 2018).

Todavia, 0 meio &cido é uma condicdo de trabalho para formacdo de radicais no
processo, ja que a elevacao do pH influencia a hidrélise que forma as espécies hidroxiladas para
degradacdo. Para isso, a irradiacdo solar e a substituicdo de metais por 6xidos de ferro, por
exemplo, é uma possibilidade vantajosa devido a capacidade de atuacdo em uma ampla faixa
de pH e maior absorgdo no visivel (KIM; KAN, 2015).

Na fotocatalise heterogénea, o semicondutor € dividido entre a banda de conducéo (BC)
e banda de valéncia (BV). Nesse processo, o material absorve energia na forma de irradiacédo
visivel ou ultravioleta, o catalisador é ativado, absorvendo energia maior ou igual ao
espacamento entre as bandas, ocorrendo, assim, a separacao de carga e formacao de elétrons e
lacuna eletrdnica. O elétron migra para a BC participando da reacdo de reducdo e a lacuna
eletrbnica pode participar de reacdes de oxidacao ou ainda, pode ocorrer recombinacdo interna

ou na superficie do material, conforme ilustrado na Figura 2.
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Figura 2 - Esquema ilustrativo da fotocatalise heterogénea. Fonte: Autora (2023).

Todas as reacdes de degradacdo fotocatalitica no sistema heterogéneo ocorrem na
superficie do material, sendo que inicialmente os poluentes sdo adsorvidos a superficie dos
catalisadores e, posteriormente oxidados, sendo assim, a utilizacao de materiais semicondutores
torna-se imprescindivel para a maior degradacéo do contaminante. Paralelo a isso, a aplicacdo
de materiais de baixo custo, eficientes e com resposta a luz torna-se necessario para 0
desenvolvimento sustentavel. Os oOxidos de ferro, por exemplo, sdo considerados
biodegradaveis e ndo toxicos. Ainda, os catalisadores baseados em ferro, possibilitam a
reciclagem no material (KIM; KAN, 2015).

3.4 Fotocatalisadores

Na fotocatalise, deve-se considerar a utilizacdo de fotocatalisadores com propriedades
altamente estaveis e com baixo consumo energético. Por isso, a comunidade cientifica se
concentra na investigacdo de materiais com base em semicondutores tradicionais, como metais
e semimetais. Em atividade fotocatalitica, os semicondutores sdo naturalmente excitados pela
luz solar, tornando-se, entdo, um topico ativo no processo (LI, K. et al., 2021).

Os fotocatalisadores elevam a capacidade de absorcdo de energia dos atomos,
propiciando a transferéncia do portador de carga e elevando a taxa de separacao da dgua atraves

da luz. Em geral, os complexos metais possuem com alto valor comercial, limitando a utilizagéo
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em uma escala maior. Visto isso, 0 bom desempenho de um fotocatalisador ndo considera
apenas a atividade catalitica, mas também seu rendimento e custo (YANG et al., 2019).

Em 1972, Fujishima e Honda utilizaram o diéxido de titanio (TiO2) como semicondutor
em atividade fotocatalitica, constatando a separacdo da agua sob irradiacdo de luz. Devido seu
alto poder oxidante, resisténcia a corrosdo, insolubilidade em agua e ndo toxicidade, o TiO2 tem
sido alvo de investigacdo na fotocatélise associado ou ndo a outros materiais. No decorrer dos
anos, outros compostos fotocataliticos foram desenvolvidos, como ZnO, WO3, SnOz, porém,
de forma individual, a reacdo superficial ndo é tdo rapida devido a pequena faixa de absor¢édo
de luz, tornando-se um empecilho no processo (WEI et al., 2021).

Alguns semicondutores apresentaram algumas desvantagens na degradacdo de
contaminantes organicos, tais como, atraso na recombinacao de elétron/lacuna, que reduz o
rendimento quantico do processo; a diminuicdo da adsorcdo de luz visivel que restringe a
aplicacdo em recursos tecnoldgicos e a pequena cobertura de superficies de catalisadores que
também compromete a taxa de degradagdo (ZHU; ZHOU, 2019). No caso do TiO2, sua
eficiéncia é limitada, pois possui uma band gap de 3,2 eV representando apenas de 3-5% de
irradiacdo UV, o que dificulta o processo de degradacdo e fortalece a busca a novos
fotocatalisadores mais eficientes.

Comumente, as propriedades fotocataliticas de um semicondutor eficiente, depende de
suas estruturas eletronicas Unicas, consistindo em uma banda de valéncia (BV) e a banda de
conducéo (BC). O semicondutor pode ser fotoquimicamente excitado para a BC, originando
uma lacuna positiva na BV, sob irradiacdo de luz solar sendo adequadas com a energia dos
fétons incidentes, iguais ou maiores que as do semicondutor bandgap. Ou seja, ao associar-se
um condutor a um semicondutor, considera-se um fluxo do semicondutor (maior funcéo de
trabalho) para o condutor (menor funcdo de trabalho), excedendo cargas negativas no condutor
e positivas no semicondutor, impedindo que os elétrons migrem para o semicondutor,
favorecendo a fotodegradacdo ja que a lacuna originada permanece vazia (LI, X. et al., 2016;
LI, X. etal., 2018).

Neste contexto, devido a sua grande area superficial, boa condutividade, alta capacidade
de aceitacdo de elétrons, funcdo de trabalho e propriedades superficiais quimicas e fisicas, o
grafeno e oxido de grafeno, mostraram-se promissores na fotocatalise com alta capacidade de
absorcdo de luz, elevada resisténcia mecanica e excelente estabilidade (QIAN; ZHANG,;
PANG, 2021).

Dessa maneira, a reciclabilidade de catalisadores magnéticos € uma das principais

vantagens dos nanocompdsitos de grafeno e materiais similares, devido seu amplo campo
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magnético e possibilidade de aproveitamento do material (CAO et al., 2019). Huang et al.,
(2019), sintetizaram ferrita de manganés (MnFe2Os;) com oOxido de grafeno reduzido, e
constataram que, embora a dimensdo da particula de MnFe;O4 tenha sido gradualmente
reduzida, a combinacdo desses materiais elevou a adsorcédo de luz visivel e seu desempenho

ndo foi significativamente alterado apos 8 ciclos.

3.5 Grafeno e seus derivados

O grafeno é estruturalmente composto por atomos de carbono sp? ligados de forma
hexagonal em rede tipo favo-de-mel que formam uma folha Gnica bidimensional (Figura 3) (AL
KAUSOR; CHAKRABORTTY, 2021). Sua espessura atdbmica com grande area superficial
dobravel, elevada mobilidade de portadores de corrente e transmitancia de camada Unica
préxima a 98%, torna-o um material inovador com aplicabilidade em varios campos, como na
eletronica, Optica, supercapacitores fotbnicos, biossensorizacdo, ciéncias biomédicas ou
aeroespaciais e também na purificacdo de agua residuais (SINGH et al., 2020; LI, N. et al.,
2021).

Figura 3 - Estrutura do grafeno. Fonte: Adaptado de Larsson et al., (2021).

Apesar de revolucionador, o grafeno puro possui alto valor comercial devido a falta de
técnicas habeis de producdo. Além disso, o Oxido de grafeno reduzido (OGR) e Oxido de

grafeno (OG) podem ser produzidos por métodos eficazes e economicamente viaveis que
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permitem a produgdo em maior quantidade (ALI et al., 2019). Atualmente, a derivagdo do
produto na forma de OGR ¢ a técnica mais indicada e simplificada para producao de nanofolhas
de grafeno, mesmo que a qualidade do material seja afetada quando comparada a técnicas mais
complexas (UEDA YAMAGUCHI; BERGAMASCO; HAMOUDI, 2016; YIN et al., 2015).

O OG apresentado na Figura 4, é obtido pela esfoliacdo do 6xido de grafite, composto
por atomos de carbono modificados por grupos contendo oxigénio que, proporcionam a
formacéo de sitios ativos pela introdugéo de novos grupos funcionais, aumentando a capacidade
de separacao em solucdes aquosas e as atividades reativas, sem transferéncia de poluicdo. Este
material possui 6timas caracteristicas adsorventes para efeito de tratamento de efluentes, sendo
largamente utilizado em processos que integrem conservacao de energia e catalise em campos
magnéticos, além de remover varios contaminantes simultaneamente devido aos seus grupos
funcionais (LIU et al., 2020).

Figura 4 - Estrutura do 6xido de grafeno. Fonte: Adaptado de Larsson et al., (2021).

Dentre as técnicas de sintetizacdo do OG, a mais utilizada é a descrita por Hummers e
Offeman (HUMMERS; OFFEMAN, 1957; YAMAGUCHI; BERGAMASCO; HAMOUDI,
2016). Esse método tem recebido cada vez mais atencdo da comunidade cientifica por ser
consideravelmente seguro e com rapidas etapas de operagdo, tornando-o uma opg¢ao
economicamente viavel para a producdo em maior escala (GUO et al., 2019). Na execucdo, o
oxido de grafite é submetido a expansdo térmica por agentes de reducdo e, em seguida,

transforma-se em OG. Ja 0 OGR (Figura 5), é conseguido pela reducdo do OG, através de
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metodologias de recozimento térmico, hidrotérmico e de reagdes quimicas (ZHAO; LIU; LI,
2015). Apesar de imperfeito e com capacidades condutivas reduzidas quando comparados ao
grafeno puro, 0 OGR, possui propriedades eletro, fotocataliticas e caracteristicas de sor¢do mais
complexas que o OG, que o permite ser empregado para o tratamento de &gua com um baixo

custo aplicado em atividades fotocataliticas (ALl et al., 2019).

Figura 5 - Estrutura do 6xido de grafeno reduzido. Fonte: Adaptado de Larsson et al.,
(2021).

A eficiéncia da fotocatalise relaciona-se diretamente com a rapidez de resposta a luz do
fotocatalisador e a recombinacdo elétrons-lacuna no processo, por conseguinte, aspectos como
as propriedades interfaciais e eletrénicas do material, composicdo quimica e proporcao fisica,
sdo importantes parametros para que a fotoreacao do catalisador seja satisfatoria. Deste modo,
a combinacdo de materiais a base de grafeno com semicondutores, é considerada uma préatica
promissora a fim de aperfeicoar a atividade fotocatalitica mantendo o processo estavel
(Graphene-based heterojunction photocatalystsL1 et al., 2018a).

3.6 Nanoparticulas magneticas no tratamento de 4gua

Os poluentes encontrados na dgua provenientes do acimulo de atividades industriais e
antropicas sdo geralmente compostos por ions de metal pesado. Esses, ndo sdo biodegradaveis
e podem impactar negativamente plantas, animais e a saide humana. Logo, materiais a base de

grafeno estdo sendo amplamente desenvolvidos para remocdo adsortiva em atividade
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fotocatalitica desses poluentes em solugdes aquosas, permitindo, ainda, a regeneracdo e
reutilizacdo do nanocomposito com a adi¢do de eluentes a depender dos sinais de carga dos ions
(WANG et al., 2021). Posteriormente, o adsorvente originario do grafeno, pode ser utilizado
em novos ciclos, ja que sua eficiéncia nao é significativamente alterada.

Neste cendrio, 0s nanomateriais a base de grafeno apresentam uma ampla gama de
aplicacdes. A alta mobilidade do portador de carga, grande &rea de superficie, alta rigidez
mecanica, alta propriedade térmica e Optica e sua natureza biocompativel, torna o grafeno e
seus precursores candidatos plausiveis para serem utilizados em varios campos, especialmente
para purificacdo de dgua (SINGH et al., 2020).

Salienta-se ainda que, as propriedades magnéticas dos nanomateriais, 0s tornam
excelentes adsorventes aplicados a fotocatalise para o tratamento de solucGes aguosas
contaminadas por, por exemplo, corantes. A busca por fotocatalisadores reutilizaveis e
economicamente viaveis, faz dos nanocompositos 6timos materiais por serem facilmente
separados utilizando um campo magnético externo e, assim, reduzindo o tempo do ciclo de
tratamento (FATIMAH; ZUNITA PRATIWI; PRIO WICAKSONO, 2020). Por isso,
adsorventes com base magnética tem uma ampla aplicabilidade em processos de remediacao
ambiental (RAJABI et al., 2016).

A revolucdo da nanotecnologia produz materiais a serem aplicados em diferentes setores
industriais, como nanoadsorventes, nanofibras e nanofotocatalisadores. O desenvolvimento
dessa primeira classe de nanoestruturas, vém sendo utilizado na remocdo de uma série de
compostos perigosos presentes na dgua, com a meta de inovar o tratamento tradicional de agua
e esgoto (BAGHERI; JAFARI; EIKANI, 2021). Em contrapartida, a sintese de nanoparticulas
magnéticas em grande escala ainda é um desafio.

Atualmente, os nanomateriais carbonosos estdo sendo utilizados acoplados ao
fotocatalisador semicondutor para produzirem compositos de alto desempenho. Os
nanocompositos podem atuar como reservatérios de elétrons para aceitar e transportar elétrons
fotogenados para uma rapida e eficiente transferéncia e separagéo de carga. 1sso, pois, grande
parte dos fotocatalisadores podem exibir baixo rendimento quéntico e baixa taxa de utilizacdo
de luz visivel e estabilidade. Por esse motivo, o grafeno tem sido visto como um material
proveitoso para a futura geracdo de fotocatalisadores heterogéneos ou semicondutor composto,
por exemplo com a utilizacéo de ferritas (PUTRI et al., 2015).

Os nanomateriais de ferritas e grafeno tem alto potencial de degradacéo de poluentes
organicos em atividade fotocatalitica, pois além de se manterem quimicamente estaveis em

diversas situacOes, as ferritas facilitam a separacdo na solucdo aquosa tratada, constatando,
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ainda, que os nanomateriais semicondutores sdo eficazes mesmo em uma pequena concentragéo
(ANJUM et al., 2019).

Estudos recentes comprovaram a eficiéncia de nanocompésitos de o0xido de grafeno e
carvéo ativado como excelentes materiais adsorventes de corantes catiénicos, como o azul de
metileno. Nota-se que o composto potencializa a capacidade de adsor¢do em comparagao aos
componentes avaliados individualmente, promovendo maior degradacgdo do azul de metileno
por meio da interacdo eletrostatica entre as moléculas do compdsito e corante
(BHATTACHARYYA et al., 2021).

Titchou et al., (2021) considera a combinacdo de materiais a base de carbono e
catalisadores com metais de transicdo como uma alternativa para evitar a oxidagéo de radicais
em sistemas homogéneos dos POA, por exemplo. Esses materiais reduzem a adi¢do quimica do
processo, 0 consumo de energia e a baixa estabilidade de materiais carbonaceos, atuando de
forma eficiente na remocao de poluentes organicos. Do mesmo modo, catalisadores a base de
metal e materiais de carbono, como carvdes, também apresentam potencial de ativacéo do H2O»,
sendo que esse mecanismo de ativacao é pela transferéncia de elétrons (WANG; WANG, 2020).

Vaérias estratégias tém sido empregadas para melhorar a eficiéncia e o desempenho das
nanoparticulas como fotocatalisadores, dentre elas destacamos o acoplamento do grafeno com
outros nanomateriais, como Oxidos semicondutores, aumentando sinergicamente a
fotoeficiéncia das nanoparticulas (LUCIANO et al., 2020; SINGH et al., 2020).

Nessa perspectiva, componentes como carvao ativado, grafeno e 6xidos de grafeno séo
preferiveis quando comparados a outros compdsitos. Isso, pois, a remocao do adsorvente apos
a adsorcdo é um problema, e ainda maior se esse residuo ndo for tratado quando direcionado
para cursos d’agua. Enfim, a funcionalidade de nanoparticulas incorporadas a superficie do
adsorvente facilita a separacdo sob o campo magnético e possibilita a reutilizacdo do
nanocomposito em novos ciclos (VINAYAGAM et al., 2022).

3.7 Carvao ativado

O carvdo ativado é considerado um catalisador e/ou suporte de catalisador
revolucionario devido sua fase amorfa que possibilita a modificacéo estrutural interna de poros,
altamente reativa e com caracteristicas quimicas mutaveis. Para obtencao de um carvéo ativado
com caracteristicas superiores, € imprescindivel que o insumo apresente baixo teor de cinzas e

alto teor de carbono, além de baixo custo. Comumente, 0 material é exposto a temperaturas
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acima de 800°, preservando as propriedades fisico-quimicas do carvao para que sua estabilidade
térmica seja efetiva (NAJI; TYE, 2021).

Globalmente, o consumo de carvéo ativado cresceu de forma significativa na utilizacao
para tratamentos de efluentes industriais, visando a protecdo ambiental. Porém, a regeneracao
do carvdo ainda apresenta custo elevado, logo, faz-se necessario o emprego de materiais
carbonosos disponiveis e com baixo custo para o rendimento do processo de tratamento de agua.
A aplicabilidade do carvdo na remocéo de corantes através da ligacdo quimica ou fisica sobre
a superficie, também provou ser eficiente, isso, pois, a qualidade nas atividades do material
inclui o volume, didmetro e distribuicdo dos poros, influenciando o potencial absortivo do
carvdo (ZHAO et al., 2020).

Ahmad et al., (2020), sintetizou carvao ativado de casca de ovo para avaliar a atividade
fotocatalitica com irradiacdo UV para degradacdo do corante azul de metileno na agua e,
obtiveram uma taxa de eficiéncia maxima de 83%. Asencios, Lourenco e Carvalho (2020),
utilizaram compdsitos sintetizados a base de carvéao ativado e TiO. para avaliar a atividade
fotocatalitica na remocdo de fenol na 4gua do mar e, obtiveram maior degradacdo com o
compodsito, do que o TiO2 de forma individual. Segundo os autores, o carvdo armazena uma
maior quantidade de elétrons fotoexcitados, aumentando a vida Util dos mesmos e promovendo
maior absor¢do de luz. Por esse motivo, é muito bem aceito em atividades fotocataliticas.

O carvéo ativado animal, constitui-se de um material granular ou em p6, formado pela
gueima de residuos 6sseos de animais, podendo ser de origem bovina, suina, ovina ou peixes.
Tais materiais podem ser reutilizados como solventes de origem organica capazes de eliminar
poluentes de solugdes aquosas. Esse material pode ser considerado uma tecnologia limpa por
ser biodegradavel, economicamente viavel, acessivel e possuir alta capacidade de adsorcao de
contaminantes no tratamento de efluentes (PRABU et al., 2022).

A producdo e consumo de carne no Brasil aumentou consideravelmente nos ultimos
anos, levando o pais a ser um dos principais produtores e exportadores mundiais de produtos
de origem animal, podendo compreender aves, bovinos e suinos, crescimento esse, que €
proporcional a populagdo humana e investimentos em industrializagdo (USDA, 2022). Esse
consumo exacerbado gera residuos 0sseos que sdo comumente utilizados para fabricacdo de
racdes, por exemplo. Estudos indicam que a principal composicao dssea, a hidroxiapatita, vem
ganhando cada vez mais espago em campos como producdo de farmacos, na biomedicina e,
especialmente, no tratamento de 4gua (KALITA; DAS; DHAR, 2022).

Neste contexto, utiliza-se o residuo da indUstria pecuéria, 0 0sso bovino, como matéria-

prima para a producgéo de carvdo ativado. O produto é classificado obtendo apenas as partes
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mais rigidas dos 0ssos, sendo um controle necessario para se obter um carvéo de alta qualidade
e alta resisténcia mecénica, mantendo propriedades maximas de porosidade e adsorcdo
(BONECHAR, 2021).

O carvao ativado de 0sso bovino € obtido pelo processo de ativacdo fisica a elevadas
temperaturas, sob condigdes controladas, proporcionando uma alta area superficial, formada
por poros distribuidos uniformemente. Sua principal caracteristica € a grande area superficial
interna desenvolvida durante a ativacao, formada por milhares de poros, classificados em meso
e macroporos. O carvao de osso difere-se dos carvdes ativados convencionais, pois, apresenta
cerca de 70-75% de hidroxiapatita (Cai0(PO4)s(OH)2) e apenas, cerca de 9-11% de carbono.
Desta forma, exibe eficiéncia de adsorcdo excepcional, sendo amplamente utilizado em
processos de purificacdo, descolorizacao, recuperacdo e remocao de odores, com alta eficiéncia
e baixo custo (NIGRI et al., 2017).

A hidroxiapatita de célcio é um fosfato de calcio com semelhancga quimica e estrutural
com constituintes inorganicos dos 0ssos e dentes de vertebrados. O material possui
caracteristicas biocompativeis, alta area superficial e baixa solubilidade em agua, podendo ser
largamente utilizado quando suportado no carregamento de inumeros catalisadores devido suas
caracteristicas compativeis com o ambiente e sua disponibilidade economicamente acessivel.
A depender da aplicacdo, sua morfologia, bem como as propriedades quimicas do material,
podem ser ajustadas de acordo com diversas técnicas sintéticas, além da possibilidade de
utilizacdo como catalisador proprio ou suporte (KALITA; DAS; DHAR, 2022; LV et al., 2019).

Considerando o exposto, acrescenta-se também um atributo Unico a hidroxiapatatita,
que € a capacidade de aceitacdo de muitas substancias anidnicas e catidénicas por meio de sua
estrutura de acomodacdo. Por isso, muitas estratégias alternativas a sua aplicacéo fotocatalitica
tem sido investigadas para fins de remediacdo ambiental tratando diferentes contaminantes,
podendo ser utilizado HAP pura ou sintetizada (ROCHA et al., 2022). Brazon et al., (2016),
afirma que as propriedades fotocataliticas de hidroxiapatita ficam ainda mais evidentes ao
serem combinadas com oxidos devido a interacdo e efeito sinérgico entre 0s componentes.

As estacOes de tratamento de agua comumente adicionam carvédo ativado em pé em
Seus processos convencionais de tratamento a fim de melhorar a remogéo de micropoluentes.
Esse material possui estrutura porosa bem distribuida, no entanto, séo utilizados geralmente em
processos descontinuos com dosagens variadas. A grande desvantagem do carvao em po e que
ele é facilmente agregado e deve ser removido eficientemente em processos subsequentes de
coagulagdo, floculacéo, sedimentacéo e filtracdo apds determinado tempo de contato para evitar

a liberacédo de poluentes adsorvidos na agua (HUANG et al., 2020).
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4 METODOLOGIA

4.1 Materiais

Etileno glicol (C2HeO2, Nuclear, 99%); cloreto de ferro (FeClz:6H.0, Biotec, 97%);
cloreto de manganés (MnCl>4H,0, Biotec, 98%); acetato de sddio (C2HzNaO23H20, Biotec,
99%); etanol (CH3CH.OH, Biotec, 98%); agua deionizada.; grafite em po (Biotec, 100%);
persulfato de potassio (K2S20s, Biotec); pentoxido de fosforo (P20s, Exodo Cientifica, 995%);
acido sulfarico (H2SO4, Quimica Moderna, 98%); permanganato de potassio (KMnQs, Biotec,
99%); peroxido de hidrogénio (H20, Synth, 30%); &cido cloridrico (HCI, Alphagec, 37%);
azul de metileno (C1s Hig CIN3S, All Chemistry do Brasil Ltda), foram adquiridos com padrdo
analitico e foram utilizados sem descontaminacéo adicional. O Carvao pulverizado (CP) (0,180
- 0,045 mm) e carvdo granular (CG) (0,71 — 0,18 mm) foram fornecidos por empresa
especializada em producéo de carvao de 0sso.

A caracterizacao granulométrica do CG e CP e suas propriedades estdo apresentados na
Figura 6 e Quadro 1, respectivamente, a seguir.
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Figura 6 — Analise de granulometria do Carvédo granular (CG) e Carvdo pulverizado
(CP). Fonte: Adaptado de Bonechar (2023).



Quadro 1 — Propriedades do carvao ativado de 0sso bovino.
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Propriedade Especificacao
Carbono 9-11%
Cinza solavel em &cido <3%
Cinza insoluvel 0,7%
Fosfato tricalcico (hidroxiapatita) 70 - 76%
Carbonato de célcio 7-9%
Sulfato de calcio 0,1-0,2%
pH 8,5-9,5
Area superficial especifica total (BET N?) 120 m#/g
Area superficial de carbono 50 m2/g
Ferro <0,3%
Tamanho de poro 7,5—-60.000 nm
Volume de poro 0,225 cm?/g
Umidade <5%
Densidade aparente 0,60 — 0,70 cm#g
Dureza >80
Aspecto Solido granulado e em p6
Odor Inodoro

Fonte: Adaptado de Bonechar (2023).

4.2 Sintese do grafeno

Sintetizou-se o grafeno pelo método Hummers modificado (HUMMERS, W. S.;
OFFEMAN; E., 1957; UEDA YAMAGUCHI; BERGAMASCO; HAMOUDI, 2016).

Inicialmente, realizou-se a pré-oxidacao e oxidacao do grafite. Em um baldo 250 mL,
adicionou-se 5 g de grafite em po, 2,5 g de K2S20g e P>0Oscom 18 mL de H2SO4 mantidos sob
agitacdo a 80 °C por 5 h. Posteriormente, filtrou-se o grafite pré-oxidado e 0 mesmo foi seco a
60 °C por 12h. Para a oxidagdo do grafeno, dissolveu-se 1 g de grafite pré-oxidado em 23 mL
de &cido sulfurico em constante agitacdo. Ainda com o material em agitacdo, adicionou-se
lentamente 3 g de KMnO4 e manteve-se por 2h a 35 °C. Passado o determinado tempo,
adicionou-se a solucdo 140 mL de agua deionizada e 2,5 mL de H2O,. O material, entdo, foi

lavado com HCI e colocado para decantagdo por 48h. Finalmente, o material resultante foi
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lavado com &gua deionizada e centrifugada (3700 rpm) por 15 minutos, por trés vezes. Retirou-
se 0 material sobrenadante e 0 mesmo foi seco em estufa por 60 °C por 12h, obtendo, assim, o
OG.

4.3 Sintese dos fotocatalisadores

Na Figura 7, a metodologia que foi utilizada neste trabalho estd representada
esquematicamente. A metodologia aplicada foi guiado por trabalhos anteriores (FERREIRA et
al., 2022; LUCIANO et al., 2020).

MuCLARLO Carvio pulverizado
FeCl,.6H,0 nLAath o

C,H,N20,,IL,0

0G + GH0, 7——
=~

-O—OODOI:I

L Lavagem com C:HsO e H-0 L Estufa a 60 °C por 10 h
Figura 7 — Esquema representativo da sintese do CP-GM. Fonte: Autora (2022).

Dissolveu-se 1 g de grafeno em uma solucéo de etileno glicol, 1 g de cloreto de ferro e
0,376 g de cloreto de manganés. A mistura foi submetida a ultrasonicagéo por aproximadamente
30 minutos. Posteriormente, adicionou-se 3 g de acetato de sodio, 15 g de carvao ativado de
0sso bovino pulverizado e 40 mL de etileno glicol, mantidos a agitacdo magnética por 30 min.
Em seguida, a mistura foi levada para autoclave de aco inox com cépsula interna em teflon a
200°C durante 10 horas. O composito entdo, foi lavado com 100 mL de etanol e 2 L de agua

deionizada e, posteriormente, seco em estufa a 60°C por 12 h. O resultante desse processo, é 0
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fotocatalisador magnético de grafeno e ferrita de manganés suportado em carvao ativado de
0ss0 bovino (CP-GM). A fim de comparacgéo na eficiéncia de degradacdo do corante utilizado,
sintetizou-se, ainda, os fotocalizadores CP-OGR, CP-MnFe;04, OGR-MnFe204, OGR e OG.

4.4 Caracterizacdo dos compositos sintetizados

Os materiais fotocatalisadores desenvolvidos no presente trabalho foram caracterizados
por diferentes técnicas instrumentais avancadas. As morfologias superficiais dos materiais
foram verificadas por meio de microscopia eletrénica de varredura (MEV) em microscopio e
microscopia eletronica de transmissdo (MET) utilizando o microscopio Shimadzu SS-550 —
Scanning Electron Microscope e o0 microscopio eletrénico de transmissdo JEOL modelo JEM-
1230, onde as imagens foram registradas e armazenadas em arquivo digital. A determinacéo
dos grupos funcionais presentes nos fotocatalisadores desenvolvidos foi realizada por meio da
analise por espectroscopia no infravermelho por transformada de Fourier (FT-IR), utilizando o
espectrofotdbmetro da marca Shimadzu modelo IR PRESTIGE-21, onde as amostras foram
maceradas com brometo de potéssio (KBr) e posteriormente prensadas a fim de formar
discos/pastilhas para que a leitura fosse realizada.

A analise de potencial zeta foi realizada para verificar a carga superficial dos
fotocatalisadores, o ponto isoeletrénico e o efeito do pH no comportamento das cargas
superficiais para auxiliar na determinacdo do pH étimo de adsorcdo de AM. O pH das solucdes
foram ajustados utilizando-se solu¢des de NaOH e HCI 1 mol L. As analises foram medidas
em diferentes faixas de pH utilizando o equipamento Delsa NanoTM C Beckman Coulter. O
Ponto de carga zero (PZC) das amostras foram avaliadas pelo método de adicdo de sal (NaCl).
Neste método, foram dispersos 20 mg de nanocompdésito em doze conjuntos de diferentes
solugBes de NaCl 0,1 mol L (20 mL). Ajustou-se um valor de pH inicial de 1 a 12 variando
adequadamente a quantidade de NaOH (0,01 mol L) e HCI (0,01 mol L), em duplicata. As
solugdes foram agitadas a 100 rpm por 24 horas utilizando a incubadora agitadora modelo
Lucadema a 25°C. Apo0s as 24 horas, as amostras foram filtradas e, mediu-se os valores finais
de pH por meio do pHmetro digital microprocessado da marca Gehaka modelo PG18000. O
gréafico foi tracado entre o pH inicial e a média de pH final (ApH). Identificou-se 0 PCZ
correspondente a faixa em que a ApH final mantem-se constante, independentemente do pH
inicial. Sendo assim, a superficie do fotocatalisador porta-se como uma solugédo tampao.

A anélise de difracdo de raio-X foi realizada com o objetivo de identificar a estrutura e

orientacdo cristalina do nanocomposito determinando, assim, a pureza dos materiais



38

preparados. Para isto, utilizou-se o Difratometro de Raio-X, DRX (Bruker, Modelo Advanced
D8) localizado no Complexo Central de Apoio a pesquisa da UEM (COMCAP/UEM), com 26
variando de 10° a 80°, radiacdo CuKa (A=1,54056 A), 2°/mim na varredura, tensdo de 40 kV e
corrente de 30 mA. Os difratogramas de DRX foram interpretados utilizando o banco de dados
PDF (Powder diffraction file) do ICDD (The International Centre for Diffraction Data),
baseando-se na literatura de artigos relevantes. Utilizou-se a equacdo de Debye-Scherrer

(Equacéo 10) para estimar o tamanho médio cristalino dos fotocatalisadores.

_ KA
- (Bcos B)

(10)

Onde, D ¢ o diametro das nanoparticulas, K é a constante do formato de cristalito sendo
0,9, A é o comprimento de onda da radiagdo do anodo de cobre, B ¢ a largura a meia altura do

pico, 6 é o angulo em que se encontra o pico.

4.5 Medicbes analiticas

A concentracdo de AM foi determinada aferindo-se a absorbéancia no comprimento de
onda caracteristico de 664 nm na regido visivel usando um espectrofotdmetro UV/vis. A curva
de calibracdo foi preparada usando uma solucdo padrdo de 100 mg/L de AM. O gréafico de
calibracdo de absorbancia versus a concentracdo de AM mostrou uma variacao linear até 20

mg/L. A quantidade de corante removido (ge em mg/g) foi calculada por meio da Equacédo 11:
Eficiéncia de remogdo = (Co - Cy) / Co x 100% (11)
Onde Cy é a concentracdo inicial de AM, e C; é a concentragdo instantanea de AM apds

adsorcdo e fotocatalise. Para quantificar as concentracdes remanescentes de AM, as amostras

foram filtradas para evitar que as particulas de fotocatalisador que permanecem suspensas
interferissem nos resultados.

4.6 Equilibrio de adsorgao

Experimentos preliminares de adsor¢éo foram realizados para otimizar o tamanho das

particulas. Esses experimentos foram conduzidos em batelada, em duplicata, variando o
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tamanho de particula, com o (CP) e (CG) e o0 nanocompdsito CP-GM com 0,15 g/L e solugédo
azul de metileno (AM) (10 mg L) a 25 °C, em um agitador a 150 rpm. Aliquotas de 4 mL
foram coletadas e aferidas durante todo experimento e, apds 24 h as amostras foram retiradas e
as concentracdes remanescentes de AM foram determinadas, a fim de observar-se o equilibrio
de adsorcédo do CP, CG e CP-GM.

4.7 Atividade fotocatalitica

O corante azul de metileno foi utilizado como parametro para comprovacdo da
funcionalidade do mecanismo de reacdo do fotocatalisador. A atividade fotocatalitica do
nanocomposito de CP foi avaliada a partir da degradacdo de uma solucdo artificialmente
contaminada de AM com uma concentracdo conhecida de 10 mg L. Inicialmente, 50 mg do
catalisador foram dispersos em um béquer com 200 mL dessa solucdo e mantida em constante
agitacdo. A fim de se obter o equilibrio de adsorcdo, as amostras permaneceram 40 minutos
sem a presenca de luz. Posteriormente, as solucfes serdo expostas a luz solar por 120 min de
tempo de reacdo. Durante todo o processo, aliquotas de 4 mL foram coletadas em intervalos
regulares de 20 mim. A intensidade da luz solar foi medida com o auxilio de um luximetro
digital Instrutemp, modelo ITLD260 (60x10% + 1000 lux). Todas as experiéncias foram
realizadas em triplicata afim de manter o percentual de erros abaixo de 5%.

A influéncia da dosagem do fotocatalisador, concentracdo de H»O, e pH foram
analisados na degradacéo fotocatalitica do AM. Para se constatar as condi¢des 6timas e avaliar
a influéncia que cada parametro exerce na eficiéncia de degradacdo, a massa de catalisador que
sera utilizada (0,01g; 0,03g; 0,05g; 0,25g), o volume de H>0> (0,1 mL; 0,5 mL; 1 mL)e o pH
do meio (2; 7; 12) foram variaveis, ajustadas com solugdes de NaOH (0,01 mol L) e HCI (0,01
mol L). Em todos os ensaios adotou-se os mesmos procedimentos explicitos anteriormente.
Apo6s encontradas as condicOes ideias, o ensaio foi realizado sem a presenca de luz a fim de
analisar a influéncia da luz solar na eficiéncia de degradacéo fotocataliticado AM comparando-
se a eficiéncia do CP-GM com os fotocatalisadores CP-OGR; CP-MnFe204; OGR- MnFe20s,

OGR, MnFe204, CP e sem a presenca de fotocatalisador.

4.8 Reciclo

Para avaliar a reciclabilidade do nanocompésito, ap6s a experiéncia de fotocatalise,

realizou-se a separacdo magnetica do fotocatalisador, que foi lavado com agua destilada, seco
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a 80°C e reutilizado em uma nova fotocatalise para degradacdo de AM durante 10 ciclos

consecutivos nas condigOes Otimas previamente definidas.

4.9 Determinacdo do bandgap oOptico

Para a realizacdo da leitura de absor¢do na regido do ultravioleta — visivel por
espectroscopia, utilizou-se o espectrofotdbmetro Agilent Car 60 UV-Vis. Analisou-se as
amostras que foram medidas em modo continuo, variando o comprimento de onda de 200 a 800
nm. O band gap do nanocompdsito foi calculado utilizando o método de Tauc, expressa pela

seguinte equacéo:

(ahv)Y = A (hv — Eg) (12)

Tal método baseia-se na suposicdo do coeficiente de absorcdo dependente de energia,
onde a ¢ o coeficiente de absorcéo, h é a constante de Planck, v é a frequéncia do foton incidente,
A ¢ a constante de proporcionalidade determinada pelo indice de refracdo, elétron e massas
efetivas da lacuna, que para materiais amorfos é considerado A=1. Eg € a energia do band gap
e 0 Y denota a natureza da transi¢do eletronica. Para a analise do nanocomposito, considerou-
se Y' =2, sendo uma transi¢ao direta permitida (MERGEN; ARDA, 2020).

5. RESULTADOS E DISCUSSAO

5.1 Caracterizacdo dos compdsitos sintetizados

5.1.1 Microscopia eletrénica de varredura (MEV) e Microscopia eletrdnico de transmissao
(MET)

A Figura 8A apresenta a microscopia do carvéo ativado pulverizado de 0sso bovino, que
possui estrutura porosa bem distribuida, predominando médios e macroporos em efeito ndo
uniforme. O processo de ativacao do carvao de 0sso torna-se um fator importante pois aumenta
a area superficial do material, favorecendo a formacéo de sitios ativos que, consequentemente,
favorecem o processo de adsorcéo (LV et al., 2019; NEOLAKA et al., 2023).
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A morfologia dos materiais apresentados nas Figuras 8B e 8C de CP-MnFe;04 e CP-
OGR, respectivamente, apresenta para a primeira citada, a aglomeracdo excessiva de
nanoparticulas com forma esférica de MnFe2O4 aderidas a superficie do carvao ativado. Fato
contrario constatado ao observar-se a morfologia do nanocompésito CP-GM (Figura 8D e 8E),
ja que, o OGR reduz de forma considerdvel a aglomeracdo de nanoparticulas, podendo ser
observado na Figura 8C as folhas de 6xido de grafeno reduzido e o CP.

A Figura 8D apresenta 0 CP-GM, averiguando as nanoparticulas de grafeno e MnFe204
aderidas ao carvao de 0sso, que por sua vez, possui em sua composicao, hidroxiapatita.
Algethami et al., (2022), sintetizou 0 nanocompdsito de hidroxiapatita e MnFe2O4 e, observou
em diferentes ampliacdes, que as nanoparticulas sintetizadas de hidroxiapatita apresentaram
forma de arroz, juntamente com as nanoparticulas redondas, fato este que foi possivel
identificar-se na Figura 8E. Ainda, de acordo com o autor, as particulas as nanoparticulas
apresentaram diametros de 500 nm e aproximadamente 200 nm, para hidroxiapatita € MnFe20a,
respectivamente.

A partir daimagem de MET na Figura 8E, foi possivel identificar cada material utilizado
do nanocompdsito CP-GM, além da boa distribuicdo de MnFe20s, fato este, que se relaciona
com a presenca da nanofolha do grafeno, que age impedindo que as nanoparticulas de MnFe204
agreguem-se de forma exacerbada, proporcionando assim, uma maior area superficial do
material sintetizado. Constatou-se a presenca de hidroxiapatita no carvao pulverizado, em
forma de cristais com morfologia cilindrica, em forma de bastdes com tamanhos variados
(HARTATI et al., 2022; ZHOU et al., 2016).

A presenca de aglomerados de MnFe204 no grafeno confirmam aderéncia a superficie
do material, ao seja, posteriormente acoplaram-se a superficie do carvao ativado de 0sso bovino.
O mesmo observou-se em pesquisas anteriores Ferreira et al., (2022) e Luciano et al., (2020),

que utilizaram como material suporte cinzas e areia, respectivamente.
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Figura 8 — Imagens de MEV das amostras de (A) Carvao pulverizado (CP), (B) Carvao
pulverizado e MnFe,04 (CP-MnFe;04), (C) Carvio pulverizado e Oxido de grafeno reduzido
(CP-OGR), (D) Grafeno e MnFe,O4 suportado em carvao pulverizado (CP-GM), e imagem de
MET da amostra de (E) CP-GM.

5.1.2 Espectroscopia no infravermelho por transformada de Fourier (FT-IR)

A Figura 9, demonstra os espectros FTIR de CP-OGR, CP-MnFe;04, CP-GM, CP,
MnFe2O4 e OGR. Os picos de absor¢do mais evidentes entre 563 e 1050 representam grupos
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fosfato. As bandas de absor¢do em 563 cm™ e 607 cm™ dos materiais CP-OGR, CP-MnFe,0.,
CP-GM e CP, demonstram caracteristicas POs> em funcdo da ligacdo de O-P-O. Ainda, o
conjunto de absorgdo em 548 cm™ para MnFe;O4 pura, atribuem-se ao alongamento das ligagdes
de (Mn-O) produzidas de forma octaédrica. O pico em 1029 cm™ pode ser considerado como
alongamento assimétrico do grupo fosfato, caracteristico da hidroxiapatita e, grupos hidroxila
ligados no metal superficial do 6xido. Os picos fracos entre 1393 cm™ e 1459 cm™, atribuem-
se as bandas de absorgdo de COs*, representados a formagdo de fons carbonato, tipicos
compostos inorganicos insoltveis em dgua (ALGETHAMI et al., 2022; ROCHA et al., 2005;
UEDA YAMAGUCHI; BERGAMASCO; HAMOUDI, 2016)

CP-OGR

CP-MnFe,0;

Transmitancia (%)

MnFe,0,

3420
2000
1634
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Figura 9 — Analise de FT-IR do Carvéo pulverizado e Oxido de grafeno reduzido (CP-OGR),
Carvdo pulverizado e MnFe204 (CP-MnFez04), Grafeno e MnFe2O4 suportado em carvao
pulverizado (CP-GM), Carvdo pulverizado (CP), Ferrita de manganés (MnFe;04) e Oxido de
grafeno reduzido (OGR). Fonte: Autora (2023).

Estudos apontam bandas centradas em 1459 cm™ como evidéncia de apatita carbonatada
do tipo AB, ja que as substituicdes de carbonato em apatita, que forma dentes e 0ssos, podem
ser classificadas em tipo A (em OH) e tipo B (em POa), referente a ligacdes estruturais da
molécula de hidroxiapatita (entre Ca e CO3). Normalmente, as bandas na regido de 1000-1200

cm™ s&o atribuidas aos grupos HPO4? que se sobrepdem aos grupos PO4*, tais caracteristicas
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relacionam-se com a excelente bioatividade do material presente no carvao de origem 0ssea
(GIEROBA et al., 2021; MISKOVIC-STANKOVIC et al., 2015; ROCHA et al., 2005).

No comprimento de onda 3420 cm™ apresenta-se o grupo funcional de alongamento O-
H com intensidade moderada, indicando, também vibracdo dos grupos OH", caracteristicas de
redes de hidroxiapatita. Em 1634 cm™, observa-se o grupo funcional de alongamento C=C
hibridizado sp? com intensidade fraca, confirmando a presenca do grafeno nos compoésitos
sintetizado. Ao analisarmos a MnFe,QO4 pura, pode-se atribuir o pico em 563 cm™ a formagéo
de ligagbes metal-oxigénio em sitios octaédricos e tetraédricos, nesta ordem (MISKOVIC-
STANKOVIC et al., 2015; NEOLAKA et al., 2023).

Nota-se que em todos os compostos com CP, 0 mesmo faz-se predominante ja que sua
proporcéo é maior no material sintetizado quando comparado com a proporcao de MnFe2O4 e
OGR. Analises recentes apontam que o mecanismo fotocatalitico do grupo POs* exerce
importante funcéo na degradacao de corantes, tais como, violeta cristal, vermelho congo e azul
de metileno (SATHIYAVIMAL; VASANTHARAJ; SHANMUGAVEL, 2020). A analise
possibilitou a confirmacdo de que, a majoritario presente no nanocompdsito € a
Ca10(PO4)3(COz)3(OH)2.

5.1.3 Potencial zeta e Ponto de carga zero

Nas Figuras 10 e 11, apresenta-se a analise da polaridade superficial em funcéo do pH
e 0 ponto de carga zero do nanocompésito CP-GM e CP, para analise do ponto isoeletrdnico
(PIE) dos materiais, a fim de comparacdo de diferentes metodologias para classificacdo do
material e 0 comportamento superficial do nanocompdsito sintetizado.

Observa-se que o PIE do CP-GM é aproximadamente em pH=6 indicando, assim, que
em pH superior, os fotocatalisadores carregam-se negativamente, chegando em até mVv= -25.
Para o material CAP, as analises indicam que as cargas carregam-se negativamente em pH

acima de pH=2.
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Figura 10 — Analise do potencial zeta de Grafeno e MnFe>O4 suportado em carvéo pulverizado
(CP-GM) e Carvao pulverizado (CP). Fonte: Autora (2023).
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Figura 11 — Analise do ponto de carga zero de Grafeno e MnFe>O4 suportado em carvédo
pulverizado (CP-GM) e Carvao pulverizado (CP). Fonte: Autora (2023).



46

O PCZ é um dos fatores mais importantes para avaliar-se a eficiéncia de degradacédo de
corantes e, pode ser identificado quando ocorre a nulidade do balango entre cargas positivas e
negativas. Observou-se que, para CP-GM e CP o0 PCZcpevw= 6,9 e PCZcp= 2,5,
respectivamente. A superficie do material carrega-se positivamente em valores abaixo do PCZ
e, negativamente em valores superiores ao PCZ, devido a composi¢do do carvdo de origem
animal. Ravichandran et al., (2023), explica que, em solu¢bes com pH menor que o PCZ,
acontece uma repulsao eletrostatica entre o corante AM e a superficie do catalisador, fazendo
com que haja uma limitacdo na absor¢do das moléculas de AM, reduzindo, assim, a eficiéncia
de degradacdo. O mesmo ocorre de forma contréria, para pH maior que o PCZ, ha uma forca
de atracdo interagindo entre a superficie do corante e do catalisador, fazendo com que o
potencial de degradacdo também seja maior. Kalita, Das e Dhar, (2022), observaram tal
interacdo eletrostatica entre o corante catiénico e o catalisador que é carregado negativamente,
onde a eficiencia de remocao também foi reduzida significamente em pH menor que o PCZ.

A presenca de sitios hidroxila na superficie no nanocompdsito indica uma das razaes
para melhor degradacdo do contaminante, principalmente ao passar da regiao acida para béasica.
Tal fator também pode justificar a ndo utilizagdo de H>O5, visto que em pH mais baixos, o *OH
é capturado e o H20O, forma uma espécie de ion oxdnio [HzO2]" que, devido sua alta
estabilidade, a taxa de autodecomposi¢do do H>O> aumenta, reduzindo assim o potencial
oxidativo de *OH (KALITA; DAS; DHAR, 2022).

5.1.4 Difracédo de raio-X

Utilizou-se a equacdo de Debye-Scherrer para estimar-se o tamanho médio cristalino
dos fotocatalisadores (UEDA YAMAGUCHI; BERGAMASCO; HAMOUDI, 2016).

A MnFe204 e MnFe204-OGR apresentaram em média cerca de 23,38 nm e 16,1 nm
respectivamente. Tais valores aproximados tambeém foram constados posteriormente por
Arango-Gonzalez et al., (2022). Observou-se entre CP e CP-GM, uma redugdo no tamanho
médio cristalino, de 42,35 nm para 35,501 nm, nessa ordem. Tal redu¢&o pode estar relacionada
devido a presenca da ferrita de manganés e OGR, dispersando e evitando a agregacdo das
nanoparticulas de MnFe>O4, por meio dos seus grupos funcionais de oxigénio (LAl et al., 2019).

A caracterizacdo estrutural dos materiais foi realizada pela analise de DRX apresentado
na Figura 12. ldentificou-se, os picos em 20 = 17,50°, 29,76°, 35,15°, 42,88°, 53,09°, 56,59°,
62,13°, 73,46° ordenados em picos agudos (111), (220), (311), (400), (422), (511), (440) e (533),

respectivamente, relativos aos planos cristalinos da estrutura de MnFe2Os4 indicando boa
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cristalinidade. Constatou-se, também, o pico em 26 = 26,41, ordenado no plano, o pico agudo
(002), atribuido ao grafeno, o que confirma sua presenca no nanocompdésito CP-GM, indicando
que apds a sintese, o grafeno foi reduzido (ARANGO-GONZALEZ et al., 2022; FERREIRA
etal., 2022; UEDA YAMAGUCHI; BERGAMASCO; HAMOUDI, 2016).
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Figura 12 — Andlise de difraco de raio-X de Ferrita de manganés (MnFe;O4), Oxido de grafeno
reduzido (OGR), Ferrita de manganés e 6xido de grafeno reduzido (MnFe;Os-OGR), Grafeno
e MnFe2O4 suportado em carvado pulverizado (CP-GM) e Carvao pulverizado (CP). Fonte:
Autora (2023).

Picos tipicos de hidroxiapatita foram identificados em 20 = 25,53, 31,50°, 39,38° e
46,38°, indicados no plano cristalografico como picos agudos (002), (211), (130) e (213), o que
comprova que apos a sintese e incorporagdo de MnFe204 e grafeno, a cristalinidade da estrutura
de hidroxiapatita permaneceu conservada, quando comparada CP e CP-GM. O indice de Miller
também indica cristais de carbonato de célcio (CaCOs) podendo ser identificados no pico
20=49,29°, constatando-se (222), caracterizado fisicamente com fase de calcita e cristais de
CaCOg3 e estrutura cristalina romboédrica, devido a estrutura densa com a presenga de
microporos, confirmando as propriedades do carvdo de 0sso apresentado anteriormente.
Neolaka et al., (2023), afirma que quanto maior o teor de calcio, maior sera a cristalinidade do

material, indicando a conservacdo da estrutura do CP apds a incorporagdo da MnFezO4 e
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grafeno (KALITA; DAS; DHAR, 2022; SATHIYAVIMAL; VASANTHARAJ;
SHANMUGAVEL, 2020). Comumente, devido a alta concentracdo de Caio(PO4)s(OH). e
CaCO:s, confere-se ao carvao utilizado uma caracteristica alcalina, o que favorece processos de

tratamento para efluentes acidos.

5.2 Equilibrio de adsor¢do

A fim de constatar-se o equilibrio de absorcdo dos materiais CP, CG e CP-GM, realizou-

se a cinética de adsorcao, apresentado na Figura 13.
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Figura 13 — Equilibrio de adsorcdo do Carvdo granular (CG), Carvéao pulverizado (CP) e
Grafeno magnético e MnFe2O4 suportado em carvéo pulverizado (CP-GM); (200 mL de solucéo
AM 10 mg L™"; adsorvente: 0,15 g/L. Fonte: Autora (2023).

Observou-se que, apos 24 horas 0 CG removeu cerca de 30%, e, atingiu o equilibrio
apos 6 horas. O CP, apresentou a remocao de 34% e atingiu seu equilibrio ap6s 5 horas. Ja o
CP-GM, por sua vez, apresentou uma eficiéncia de descoloracdo de 41% ao final do
experimento alcangando o equilibrio de adsorcdo apds 4h. Dessa forma, os resultados indicam
que a incorporagdo de MnFe,O4 e grafeno aumentaram a capacidade de adsor¢do do material.
Passados 40 minutos iniciais, 0s adsorventes alcangaram cerca de 45%, 47% e 56% de seu
potencial maximo de eficiéncia, para CG, CP e CP-GM. Tal aumento, também, pdde ser

observado apos 2 horas, resultando em uma remocdo de aproximadamente 25%, 27% e 38%,
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que corresponde a cerca de 77%, 79% e 80% da eficiéncia maxima de adsorcao (apds 24h) para
CG, CP e CP-GM.

Os resultados superiores do CP-GM comparados ao CP, pode ser justificado pois a
relacdo entre superficie/volume, porosidade, afinidade, carga superficial, aléem de propriedades
fisicas e quimicas do material podem influenciar a taxa de rea¢do do adsorvente. Sabe-se que 0
grafeno e a MnFe>O4 possuem boa compatibilidade e forte atracdo eletrostatica, o que auxilia a
dispersdo rapida de, por exemplo, ions metalicos, desempenhando um importante papel no
equilibrio de adsorcdo (VERMA et al., 2020). O carvao pulverizado é um residuo industrial
com alto poder adsortivo e, a heteroestrutura do nanocompdsito CP-GM, acopla MnFe204 e
OGR ao carvéo, potencializando sua eficiéncia de adsorcdo sem irradiacéo solar. Visto que o
CP é um bom suporte de catalisador, justifica-se a utilizacdo do material na fotocatalise, a fim
de otimizar o processo de descoloracdo do AM, averiguando qual a influéncia da luz solar no
sistema em seu potencial maximo de remog&o apds 120 minutos, para assim, agregar valor ao

residuo da industria.

5.3 Atividade Fotocatalitica

5.3.1 Dosagem do fotocatalisador

O ensaio preliminar de dosagem foi realizado a fim de analisar o potencial de
degradacéo fotocatalitica do material como critério para as condi¢6es posteriores. A Figura 14
apresenta a remocao em diferentes concentra¢fes de nanocomposito CP-GM. Observou-se que
0s experimentos com 0,05 g/L mg e 0,15 g/L apresentaram eficiéncia de remocdo de
aproximadamente 34% e 55%, respectivamente. Ja o potencial de remocéo de 0,25 g/L e 1,25
g/L foram, aproximadamente 85%, valor muito superior quando comparados as menores

concentragoes.
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Figura 14 — Eficiéncia de descoloracdo do azul de metileno com diferentes dosagens do
fotocatalisador Grafeno e MnFe2O4 suportado em carvao pulverizado (CP-GM) (200 mL de
solugdo AM 10 mg L !; fotocatalisador: 0,05 g/L - 1,25 g/L; Intensidade de irradiagdo solar:
100170 W/m?). Fonte: Autora (2023).

Ataet al., (2021), cita que elevando a quantidade de catalisador, aumenta-se a presenca
de sitios ativos e geracdo de radicais que favorecem o processo de degradacao do contaminante.
Porém, quando o acréscimo na dosagem de catalisador é excessivo, pode-se ocasionar a
aglomeracdo do mesmo, fazendo com que a absorgédo de luz e a eficiéncia de descoloracao
também seja reduzida, devido a perda de area superficial e a baixa penetracdo de luz solar.
Sendo assim, ao analisar-se a utilizacao de 0,25 g/L e 1,25 g/L, constatou-se que a eficiéncia de
remoc¢do foi muito proxima, de 85% para 86%, sendo um aumento desprezivel levando em
conta que a quantidade de nanocompostico utilizado foi 5 vezes maior que 0,25 g/L. Optou-se,
entdo, pela utilizacdo de 0,25 g/L como condicdo Otima de dosagem de fotocatalisador
(AOUDJ; DROUICHE; KHELIFA, 2019).

5.3.2 Dosagem de H20>

Realizou-se o teste de dosagem de H>O, a fim de avaliar o comportamento fotocatalitico

do nanocomposito (Figura 15).
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Figura 15 — Dosagem do H20>. Eficiéncia da descoloragéo do azul de metileno (200 mL de
solugdo AM 10 mg L™"; H202: 0 - 1,0 mL; fotocatalisador Grafeno e MnFe,O4 suportado em
carvdo pulverizado (CP-GM): 0,25 g/L; de irradiacdo solar: 100-170 W/m?). Fonte: Autora
(2023).

Comumente, a adicdo de H>O2 aumenta a disponibilidade de radicais hidroxila na reagdo
e, consequentemente, a degradacdo do corante AM através da desmetilacdo seguido pelo ataque
e quebra das espécies radicais ao anel aromatico do corante (DIN et al., 2021). Porém, nota-se
que a utilizacdo de 0,1 mL e 0,5 mL de H20- resultaram em uma eficiéncia de remogéo de
87,5%, 89,37% respectivamente. Ja adicionando 1,0 mL de H:O, obteve-se 92,31% de
remocao. Tal ocorréncia também foi constatada por Lai et al., (2019), Wang et al., (2019) e
Ferreita et al., (2022), destacando que o acréscimo de oxidante pode gerar H>O> residual sem a
presenca de sitios ativos na reacdo, ocorrendo entdo, uma espécie de competicdo com o0 AM
pelos radicais hidroxila. Apesar do aumento na degradacdo do AM, tais resultados nédo sdo téo
consideraveis, visto que utilizando apenas o nanocompdsito CP-GM, atingiu-se cerca de 85%.

Analisando os dados obtidos, optou-se por utilizar apenas o fotocatalisador magnético,
sem adicao de H2O2 ja que a maior proporcao utilizada do oxidante, ndo atingiu um acréscimo
de 10% quando comparado com apenas 0 nanocompésito CP-GM. Visto que a reagdo ndo
apresentou fotodegradagdo satisfatoria, com a excessiva adi¢do de H202 (1,0 mL), suspeita-se
gque 0 mesmo agiu capturando os OH* ja que uma das vias de degradagdo Fenton é a reacdo

redox de decomposicdo do reagente catalisada por Fe®**, além do que, utilizando o oxidante
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quimico, pode haver-se a formacgédo do radical hidroperoxila (HO2"), que possui um potencial
de redugdo menor do que o radical hidroxila (AOUDJ; DROUICHE; KHELIFA, 2019).

As caracteristicas semicondutoras do CP-GM também dispensam a utiliza¢do de H20>
devido ao processo caracterizar-se por fotocatalise heterogénea. O fotocatalisador magnético
absorve os fétons de luz solar, recombinando os elétrons e promovendo a descoloragdo do
corante. Com sua excelente estabilidade e consideravel area superficial, 0 CP-GM, pode agir
elevando a vida util dos portadores de carga fotogerados, auxiliando o processo fotocatalitico
e, por consequéncia, estabelecer um processo mais limpo e sustentdvel (HERRMANN, 2010;
KEFENI; MAMBA, 2020).

5.3.3 Condigdes reacionais

A Figura 16 apresenta a anélise de descoloragdo do AM em diferentes condigdes de luz,
H20- e fotocatalisador. Observa-se que a condi¢ao que mais favoreceu a degradacéo do corante
foi com o sistema de CP-GM e luz solar, enquanto a utilizacao do fotocatalisador sem a presenca
de luz ocasionou uma remocédo de cerca de 62,7%. Isso comprova que o CP-GM, exerce
importante funcdo adsortiva na solugdo, porém a presenca de luz favorece ainda mais o
desempenho fotocatalitico do material (LV et al., 2019).

Com e sem a presenca de luz, observou-se uma remocéo de cerca de 21,0% e 2,2%,
comprovando, entdo, que a presenca de luz no sistema auxilia a descoloracdo do AM. Por outro
lado, sem a presenca de irradiacdo, o resultado foi insignificante ap6s 120 minutos, fato esse,
também observado por Alburaih et al., (2022). Embora o fotocatalisador seja eficiente, a
incidéncia de luz no sistema complementa o processo de descoloracdo. Na auséncia de
catalisadores, compromete-se a producéo de elétron-lacuna e, consequentemente a formacéo de
radicais para degradacdo, o que atrasa a descoloracao do sistema (ATA et al., 2021; KUMARI
etal., 2022).
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Figura 16 — Eficiéncia da descoloragéo do azul de metileno em diferentes condicdes de luz (200
mL de solugdo AM 10 mg L™!; H202: 0,5 mL; fotocatalisador Grafeno e MnFe,O4 suportado
em carvao pulverizado: 0,25 g/L; irradiacéo solar: 100-170 W/m?), em diferentes condicdes.
Fonte: Autora (2023).

Utilizou-se 0,5 mL de H20. a fim de avaliar a performance de descoloragdo com e sem
a presenca de luz. A remogéo foi de cerca de 30,3% e 45,45% para a adi¢cdo do oxidante no
escuro e ao ser submetido a luz solar, respectivamente. Mesmo com a atuacdo do oxidante, sem
a presenca do nanocomposito CP-GM, o H202 permanece com um numero reduzido de sitios
ativos para formacdo de radicais e, consequentemente, a descoloracdo também é menor
(FERREIRA et al., 2022). Apesar de sua disponibilidade e frequente emprego, o H2O2, muitas
vezes requer da utilizacdo em grande proporcdo, o que pode propiciar a contaminagdo
secundaria em um sistema de oxidacao avancada, a depender do catalisador de ativacdo (XU et
al., 2022).

Como citado anteriormente, o mecanismo da fotocatalise heterogénea em
semicondutores, como € o caso do CP-GM, baseia-se na ativacdo do fotocatalisador com a
incidéncia de luz no sistema, que ocorre quando a energia incidente é maior que o band gap na
superficie do catalisador. Fato esse que potencializa o processo de descoloracdo do AM, ja que
0s primeiros 40 minutos iniciais, ocorre apenas a adsor¢cdo do contaminante, alem do que, a
presenca de materiais hibridos como semicondutores, como OG e OGR, também melhora o

processo fotocatalitico. Nesse processo ndo had a transferéncia de poluicdo, j& que o



54

contaminante é oxidado e convertido CO2 e H20: e outros intermediarios (KARIM,;
KRISHNAN; SHRIWASTAYV, 2022; MONDAL et al., 2021)

5.3.4 Tipo de fotocatalisador
A eficiéncia de remocéo do corante foi avaliada utilizando diferentes fotocatalisadores,

a fim de comparar a influéncia de cada um deles com o0 nanocompadsito sintetizado CP-GM, nas

mesmas condicGes de luz, corante AM e luz solar (Figura 17).
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Figura 17 — Eficiéncia da descoloracdo do azul de metileno com diferentes fotocatalisadores
(200 mL de solugdo AM 10 mg L™'; fotocatalisador: Grafeno e MnFe2Oa4 suportado em carvao
pulverizado (CP-GM); Carvédo pulverizado e MnFe;O4 (CP-MnFe204); Oxido de grafeno
reduzido (OGR); Ferrita de manganés (MnFex04); Carvao pulverizado (CP); Carvéo
pulverizado e Oxido de grafeno reduzido (CP-OGR) e Oxido de grafeno e Ferrita de manganés
(OGR-MnFe;04): 0,25 g/L; irradiagdo solar: 100—-160 W/m?). Fonte: Autora (2023).

Inicialmente, nota-se, que as amostras compostas por CP se apresentaram mais
eficientes em relacdo aos outros materiais. O CP e CP-MnFe204 alcangaram uma eficiéncia de
degradacéo de aproximadamente 78,3% e 66,4%, respectivamente. Suspeita-se que o material
virgem (CP) pode ter tido seus poros obstruidos pela MnFe2Os, pois, a utilizacdo da
nanoparticula reduz o band gap do material, favorecendo a recombinacdo na superficie da
heteroestrutura e a absorcdo de luz, o que deveria ter aumentado a eficiéncia de remocéo

(ALGETHAMI et al., 2022). Apesar do OGR atuar como capturador de elétrons e intensificar
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a eficacia do semicondutor, sua associacdo com MnFe>O4 apresentou descoloragdo de AM de
cerca de 37,9%, um resultado inferior ao esperado, situacdo também constatada por Ferreira et
al., (2022). Notou-se, na analise experimental que os fotocatalisadores puros, OGR e MnFe204,
acarretaram o0 aumento da turbidez das amostras, comprometendo a absorcdo de luz pela
dificuldade de penetracdo dos fétons que, ocasionalmente, afetam a descoloragdo do
contaminante.

A MnFe204 pura apresentou cerca de 25,8% de descoloragdo de AM. Este fato pode
relacionar-se com aglomeracao das particulas, além da limitacdo da taxa de recombinacéo dos
elétrons-lacuna nos ciclos Fe**/Mn®* e Fe?*/Mn?*, o que reduz a area de contato com o0s
poluentes organicos e desfavorece o processo de fotodegradacdo, além da turbidez das
amostras, que atrapalham a passagem e absorcdo da luz solar no complexo. A MnFe;O4
desempenha um importante papel de recuperacdo magnética do fotocatalisador e, sua
acoplagem em materiais como o grafeno, promovem o ajuste na recombinacdo de elétrons,
evitando o0 consumo excessivo e a taxa de oxidacdo do material, além de evitar a aglomeracéo
das particulas de MnFe2O4 (SHI et al., 2022).

O nanocompdésito CP-GM, mostrou-se 0 mais eficiente na descoloracdo do corante,
atingindo cerca de 85,5%, superando, assim, o CP puro (78,4%). A sinergia e o potencial
fotocatalitico do carvdo, MnFe20s e OGR atuaram em conjunto favorecendo a descoloracédo
continua do AM, propiciando o ajuste nas condi¢cdes de degradacdo do contaminante. As
nanoparticulas de MnFe>O4 atuam nasuperficie do OGR, facilitando a separagéo e transferéncia
de elétrons e lacuna da amostra e, assim a oxidacdo do AM (WEI et al., 2020). Hartati et al.,
(2022), constatou que o Ca?* e PO4* sd0 os principais compostos responsaveis pela adsorgao
superficial, otimizando ainda mais a degradacdo do AM. (BONECHAR, 2023). A
hidroxiapatita, 0 composto presente em maior quantidade no carvdo de osso utilizado, é um
excelente adsorvente e age na troca idnica dos grupos carboxilicos e cations (-COOH) e célcio
(Ca2") concentrando suas moléculas na superficie do material, demonstrando boa interagio em

proteinas enzimaticas.

5.3.5 Efeito do pH

Em sequéncia, a Figura 18 demonstra a eficiéncia de fotodegradacdo do AM em
diferentes condicbes de pH, do acido ao basico. Apesar do pH influenciar positiva ou
negativamente o processo de descoloragdo, a origem e interagcdo do fotocatalisador com a

substancia contaminante tambeém pode interferir no processo fotocatalitico. As andlises
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demonstraram que em pH basico, a degradacdo do contaminante foi de aproximadamente
97,1%, superior quando comparado em pH neutro e &cido, com remogdo de cerca de 85,5% e
78,2%, respectivamente. Bin et al., (2022), constatou que 0 nanocomposito de hidroxiapatita,
também apresentou melhor potencial de degradacdo em pH neutro e alcalino, sendo que em
meio acido a degradacdo foi consideravelmente menor.

Vale ressaltar que, aos 40 minutos iniciais, a adsor¢cdo do nanocompésito em pH=12 ndo
foi tdo satisfatoria quanto em pH=7, porém, ap0s as amostras serem submetidas a luz solar,
nota-se que em meio basico, 0 nanocompdsito apresentou importante resultado de descoloracao.
A alta eficiéncia do nanocompoésito em neutro e alcalino pode ser atribuido devido a carga
superficial negativa, onde seu PIE carrega-se negativamente em pH superior a 7, 0 que,
consequentemente, favorece a degradacdo de contaminantes catidnicos, como é o caso do AM.
Toda via, em meio alcalino, o NaOH, pode auxiliar a producdo de O2, que, por conseguinte,
pode reagir com h+ dando origem a «O* ", potencializando o poder fotocatalitico, podendo néo
estar relacionado com o somente com o potencial do nanocomposito CP-GM (FERREIRA et
al., 2022).
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Figura 18 — Eficiéncia da descoloracdo do azul de metileno em diferentes condicGes de pH.
(200 mL de solugdo AM 10 mg L™!; fotocatalisador Grafeno e MnFe,O4 suportado em carvio
pulverizado (CP-GM): 0,25 g/L; pH 7-12; de irradiacdo solar: 100-160 W/m?) em diferentes
condigdes de pH. Fonte: Autora (2023).
Anjumetal., (2019), Ferreiraetal., (2022) e Luciano et al., (2020), expdem que, devido
0 OGR também possuir carga superficial negativa, em meio &cido, pode ocorrer a dissolucéo

de ions metalicos, ocorrendo a predominancia das cargas superficiais do grafeno, favorecendo
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a adsorcao das moléculas catiénicas de AM. Contatou-se, entdo, que o como o fotocatalisador
CP-GM apresentou alta eficiéncia em diferentes condi¢des de pH e, ao relacionar a aplicacéo
em escala industrial, sugere-se 0 ndo ajuste da faixa de pH, promovendo um processo mais
limpo e sustentavel (HUANG et al., 2020).

5.3.6 Reciclo

Os resultados para reciclabilidade do CP-GM (Figura 19) demonstraram que, que ap0s
6 ciclos houve uma ligeira reducgéo de cerca de 6,5% no desempenho fotocatalitico do material,
onde manteve-se 0 potencial de remocédo de aproximadamente 79,8%, sugerindo excelente
estabilidade do material sintetizado. Além da estabilidade e baixo valor comercial, um bom
fotocatalisador também compreende-se pela facilidade de separacdo e emprego em novos
ciclos, confirmando que a aderéncia da MnFe;O4e OGR ao CP constatadas pelas imagens de
MEV e MET, auxilia a descoloracdo e, por apresentarem baixa solubilidade em agua, favorece
0 processo de separacao magnética sem perdas significativas do material ( LI et al., 2018b).

A performance na reciclabilidade do material pode ser comparado com a analise de
Algethami et al., (2022), ao qual avaliou a capacidade fotocatalitica no nanocomposito de
hidroxiapatita e MnFe,O4, constatando uma reducéo de 1% consecutivamente, totalizando 5%
de reducdo em seu potencial ao final do quinto ciclo. Propriedades antimicrobianos também
foram apuradas em nanoparticulas com hidroxiapatita devido a alta reatividade e ndo
seletividades das espécies que liberam ions OH™ em meio aquoso. Posteriormente, observou-se
uma consideravel diminuicdo de 14%, 29%, 42% e 60% para o 7° 8° 9° e 10° ciclo,
correspondente a eficiéncia de descoloracdo de 73,8%, 60,9%, 49,8% e 34,2%,

respectivamente.
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Figura 19 — Estabilidade e reutilizacdo do fotocatalisador magnético para descoloracdo do azul
de metileno em 10 ciclos (200 mL de solugdo AM 10 mg L'; fotocatalisador Grafeno e
MnFe>O4 suportado em carvédo pulverizado (CP-GM): 0,25 g/L; de irradiacdo solar: 100-160
W/m?). Fonte: Autora (2023).

Huang, X. et al.,, (2019), avaliou o potencial fotocatalitico do nacompompdsito
MnFe204 puro e com adicdo de 10% de OGR e, observou que, o grafeno beneficia a absorgéo
de luz visivel do nanocomposito, além de favorecer o processo de reciclagem e,
consequentemente a degradacdo de contaminantes organicos. Dessa forma, 0 nanocomposito
CP-GM, qualifica-se como um bom fotocatalisador, com boa absor¢édo a irradiagdo solar,
excelente mobilidade de carga superficial e menor tempo de recombinac&o de elétrons, além do
custo beneficio do suporte (CP) utilizado.

5.3.7 Determinagdo do band gap Optico

Analisou-se o espectro de fotoluminescéncia do CP e CP-GM (Figura 20 e 21),
indicando que os band gaps Opticos sdo aproximadamente 5,0 e 2,10 eV, respectivamente.
Constatou-se, portanto, uma reducdo dos valores de band gap do nanocomposito comparado
com o CP. O valor encontrado para o band gap do CP coincide com os valores de hidroxiapatita
(HAp). Autores sugeriram que a vacancia na HAp sdo devido a atomos de O do grupo OH,
resultando em um gap de aproximadamente 5 eV na regido UVC (ndo presente na luz solar na
superficie da Terra) (BYSTROV et al., 2016).
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Essa reducdo pode ser atribuida a adi¢cdo de MnFe>O4 ao nanomaterial. Além de 6timo
semicondutor, a MnFe>QO4, possui band gap que varia de 1,9 a 2,5 eV, sendo assim, seu
acoplamento a outros materiais ndo so eleva a atividade fotocatalitica, como também auxilia na
recuperacdo das nanoparticulas devido ao seu amplo campo magnético, potencializando as
propriedades Opticas do nanocomposito e, auxiliando a excitagdo do material por irradiacdo
visivel (AKSHHAYYA et al., 2022; DIEU CAM et al., 2021; FULADI et al., 2022; KALITA;
DAS; DHAR, 2022).
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Figura 20 — Determinacdo do bandgap do CP. Fonte: Autora (2023).
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Figura 21 — Determinacdo do bandgap do CP-GM. Fonte: Autora (2023).
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Estudos afirmam que, devido seus grupos funcionais e caracteristicas semicondutoras,
com band gap que varia de 2 a 0,02 eV, o 6xido de grafeno reduzido contribui com a absorgao
de fotons de luz e reduz a recombinacdo elétrons e lacuna devido sua rapida transferéncia, além
de, possibilitar excelente contato com os adsorventes, devido sua area superficial, por exemplo
(MONDAL et al., 2021).

O aumento do band gap do CP-GM quando comparado com o grafeno puro pode ser
atribuido a concentracdo de grupos funcionais epdxi. Por consequéncia, o estreitamento do
bandgap do fotocatalisador magnético comparando-se com CP, também pode atribuir-se a
transferéncia de carga efetiva no composto, ocasionando uma reducdo na elétron-lacuna e
recombinacdo de pares. Sendo assim, isso auxilia a transferéncia de elétrons e da
heteroestrurura, fazendo com que a eficiéncia da fotodegradacdo aumente quando utilizada luz
visivel (ALGETHAMI et al., 2022; NEELGUND; OKI, 2022).

5.3.8 Mecanismo e analise cinética

A partir dos resultados obtidos, utilizando diferentes condicdes e fotocatalisadores é
possivel propor um mecanismo de reagdo na remocéao do corante AM (Figura 22).

Pares de elétrons (BC) e lacunas (BV) sao formados quando a luz solar € irradiada na
MnFe>Q04. Os elétrons produzidos no meio reacional sdo transferidos para a superficie do OGR,
reagindo com as moléculas de oxigénio para produzirem espécies de oxigénio ativo Ozs. 1sso
ocorre devido ao grafeno possuir uma 6tima aceitacdo no transporte de elétrons, o que impede
a recombinacdo direta de elétrons e lacuna, melhorando assim, a degradacdo fotocatalitica
(MANDAL et al., 2020).

A excitacdo da MnFe;O4 também promove a transferéncia de elétrons da BC para a
superficie do CP, que por sua vez, reagem com o0 oxigénio circundante nas lacunas originando
02 (ALGETHAMI et al., 2022; ROCHA et al., 2005; YAO et al., 2017). Enquanto isso, as
lacunas positivas (h+) formadas no inicio do processo de excitacdo, recombinam-se com
moléculas de agua produzindo ions H+ e OHe, que, finalmente oxidam o contaminante,
convertendo-os em CO», H20 ou outros intermediarios (ALGETHAMI et al., 2022; MANDAL
et al., 2020).

O mecanismo de fotodegradacdo do AM esta apresentado nas Egs. 13 a 19, a seguir:

hv (luz visivel) + MnFe,0s— h™+¢ (13)

MnFe;04 (h* +€)+OGR — h*+e (14)



Figura 22 — Representacdo do posivel mecanismo de reacdo fotocatalitico. Fonte: Autora

(2023).

&+ OGR — OGR (&)
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6 CONSIDERACOES FINAIS

Conclui-se que, o0 nanocomposito sintetizado CP-GM apresentou excelente desempenho
fotocatalitico para a degradacdo do AM. O método solvotérmico utilizado promoveu a
aderéncia das nanoparticulas de MnFe;O4 a0 OGR, que, por sua vez distribuiram-se a superficie
do carvao 6sseo pulverizado. A sinergia entre os materiais acoplados atingiu cerca de 85,5% de
remocao do corante AM em pH neutro, podendo ser dispensada a utilizacdo de H202, 0 que
torna o processo ainda mais sustentavel. Além de prolongar o ciclo de vida do residuo 6sseo
devido sua boa estabilidade de reutilizacdo em ciclos consecutivos, 0 método de tratamento
empregado tende a agregar valor ao bioresiduo, possibilitando a ativacdo do sistema
fotocatalitico utilizando a luz solar. Visto que o nanomaterial mostrou-se eficiente, sugere-se
para pesquisas futuras, a investigacao de diferentes propor¢6es dos nanomateriais, bem como a
aplicabilidade em contaminantes industriais, farmacos, pesticidas ou inseticidas, além da

verificagdo do potencial fotocatalitico em escala industrial.
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