

Sustentabilidade Aquática: Uso de Sistemas Wetlands Verticais para Biorremediação de Bisfenóis

Elison Hiroshi dos Santos Nishimura¹; Luciana Andreia Borin de Carvalho²; José Eduardo Gonçalves³

¹Acadêmico do Curso de Biomedicina, Campus Maringá-PR, Universidade Cesumar - UniCesumar. Bolsista PIBIC/ICETI-UniCesumar. ohironishimura@gmail.com. ²Co- orientadora, Programa de Pós-Graduação em Biotecnologia Ambiental (PBA), Universidade Estadual de Maringá (UEM), labcarvalho@uem.br. ³Orientador, Programa de Pós-Graduação em Tecnoloigas Limpas (PPGTL), Universidade Cesumar (UniCesumar), jose.goncalves@unicesumar.edu.br.

Introdução: A qualidade da água é o fator básico para seus múltiplos usos, e o estudo da bacia hidrológica como unidade de avaliação pode inferir as características do manancial e do meio envolvente. Com o desenvolvimento tecnológico e aumento de produção industrial, houve um aumento da quantidade de resíduos plásticos no meio ambiente. Atualmente encontra-se resíduos (nano e micro) plásticos em alimentos, solo, água e no ar, estas micropartículas plásticas são conhecidas por degradar-se em monômeros de plástico de policarbonato, como o Bisfenol-A, um dos resíduos plásticos mais estudados devido sua alta toxidade e potencial como desregulador edócrino. A toxicidade dos resíduos plásticos na vida aquática em ambiente marinho é bem documentada, porém, informações sobre sua contaminação de corpos d'água doce são escassas, uma vez que a poluição plástica em ambientes marinhos muitas vezes é introduzida por rios, o que reforça a necessidade de estudar o comportamento desses resíduos em corpos d'água doce. Recentemente, o uso de wetlands construídos para fins de biorremediação vem ganhando atenção considerável em muitos países. Esses sistemas são considerados uma alternativa eficiente e de baixo custo para a remediação de água contaminada com compostos orgânicos, através de processos combinados de substratos, plantas e microorganismos. Objetivo: o objetivo deste trabalho é avaliar a montagem do sistema de biorremediação piloto de Wetland verticais em camadas, utilizando plantas aquáticas e/ou micro-organismos para realizar um estudo de remoção de bisfenóis e análise por GC-MS. Paralelamente, pretendemos analisar a capacidade de tolerância das plantas aquáticas e/ou microorganismos expostos aos bisfenóis neste sistema Wetland. Metodologia: Para o desenvolvimento da metodologia, serão pesquisadas plantas e/ou micro-organismos presentes em pontos da bacia do rio Pirapó (da nascente até próximo a foz com o rio

Paranapanema) ou de bancos de dados e que possam ser empregados no sistema wetland. A construção das unidades experimentais do sistema de tratamento wetland construído de fluxo vertical (WCFV) seguirá diretrizes técnicas, e a montagem será realizada no Laboratório de Análise Microbiologia da Água, Ambiente e Alimentos, do Departamento de Ciências Básicas da Saúde da Universidade Estadual de Maringá -DBS/UEM em tanques com capacidade aproximada de 50 litros, preenchidas com camadas de areia, cascalho e substrato. Esses leitos serão colonizados por plantas e/ou micro-organismos selecionados criteriosamente, levando em conta a presença dos resíduos de bisfenóis mais prevalentes e ecologicamente preocupantes, identificados durante a etapa de extração de resíduos de bisfenóis de águas superficiais do rio Pirapó. Os diferentes Bisfenóis serão avaliados em condições controladas através da aplicação do método de extração em fase sólida (SPE) para quantificação de cada Bisfenol e seus derivados, antes e depois do sistema wetland, por cromatografia em fase gasosa acoplada à espectrometria de massas (GC-MS). Para a quantificação será realizada a derivatização das amostras após o processo de extração, com 50 µL de DMF e 50 µL de BSTFA+1% TMCS e na sequência analisados por GC-MS. Resultados Esperados: Os resultados obtidos neste trabalho permitirão mitigar o efeito da biorremediação de diferentes tipos de Bisfenóis, caracterizados com desreguladores endócrinos com alto grau de toxicidade em água doce superficial e assim avaliar a possibilidade de remoção de resíduo de degradação de plástico em corpos hídricos. Além disso, o desenvolvimento deste tipo de sistema de biorremediação aliado à um eficiente método analítico de análise e identificação e quantificação de Bisfenóis pode ser aplicado no monitoramento da degradação de plástico em água doce superficiais. Espera-se que todas as informações possam contribuir com o entendimento do processo de degradação de plásticos através da formação destes compostos que são caracterizados como desrreguladores endócrinos, e, desta forma, fomentar ações que minimizem estes problemas, como redução do consumo, uso racional e remoção/minimização dos mesmos em corpos hídricos.

Palavras-chave: Corpos d'água, Desregulador Endócrino, Remediação, Poluição Ambiental, Impacto Ambiental.

